
The Corpus Thread
“Reference corpus of general language”

The complete documentation of the

DK-CLARIN WP 2.1

Project

Jørg Asmussen
ja@dsl.dk

Det Danske Sprog- og Litteraturselskab

Society for Danish Language and Literature

Dept. for Digital Dictionaries and Text Corpora

Christians Brygge 1, DK-1219 Copenhagen K

dsl.dk

March 5, 2014

mailto:ja@dsl.dk
http://dsl.dk

Preface

This book documents the work carried out in Work Package 2.1 (WP 2.1) of the

DK-CLARIN project: Reference Corpus of general language. The project was offi-

cially running three and a half years from 2008 – 2011. The work in WP 2.1 was car-

ried out by Jakob Halskov (Dansk Sprognævn), Liisa Theilgaard (Society for Danish

Language and Literature, DSL), and Jørg Asmussen (DSL). All documentation is by

Jørg Asmussen with input from other members of DK-CLARIN.

The goal of the DK-CLARIN Project in general was to provide a research infra-

structure for the humanities integrating written, spoken, and visual records into a

coherent and systematic digital repository. This repository should be available at

clarin.dk where further information on the project can be found as well.

The DK-CLARIN project has stopped, however the type of corpus work de-

scribed in this documentation is continuing and further developing at the Depart-

ment for Digital Dictionaries and Text Corpora at DSL. Thus parts of this docu-

mentation may have been updated and new tools and resources may have become

available. Further information can be found at corest.dsl.dk.

This book is structured in three parts: The Introduction part gives an account

of the goal of WP 2.1 and of the tasks that have been carried out to reach it. The De-

sign part is a comprehensive description of the applied text format and metadata

structure. The Collecting part sketches how to manage collecting and and process-

ing the material. The Markup part deals primarily with POS tagging and discusses

various approaches as well as the applied approach and its specific requirements.

Finally, the Deployment part, gives some details on the composition of the corpus

and describes show it can be accessed.

2

http://clarin.dk
http://corest.dsl.dk

Contents

I Introduction 7

1 Aim and concepts 8

Sketching the world of corpora

1.1 Aim of the project . 9

1.1.1 Reference corpus . 9

1.1.2 CMRS framework . 10

1.2 Project tasks and documentation outline 12

1.3 Text collection, text bank, corpus . 16

1.3.1 Text collection/archive/repository 17

1.3.2 Text bank . 17

1.3.3 Corpus . 17

II Design 19

2 The text bank 20

A platform for managing text collections

DRAFT VERSION

2.1 Introduction . 21

2.2 Implementation . 21

2.2.1 XML vs. relational db systems 21

2.2.2 eXist – the text bank system by choice 22

2.2.2.1 Advantages . 22

2.2.2.2 Disadvantages . 22

2.2.2.3 Current implementation and set-up 23

2.2.2.4 User Interfaces . 23

2.3 Features . 23

2.3.1 Text repository . 23

2.3.2 Text registry . 23

2.3.3 Text supplier registry . 23

2.4 Alternative approaches . 23

3

Contents 4

3 Text metadata 24

What the header of a text item looks like

3.1 Concepts . 26

3.2 Header structure . 27

3.2.1 The file description . 28

3.2.1.1 The title statement 28

3.2.1.2 The extent statement 30

3.2.1.3 The publication statement 30

3.2.1.4 The notes statement 32

3.2.1.5 The source description 32

3.2.2 The encoding description . 37

3.2.2.1 The sampling declaration 37

3.2.2.2 The project description 38

3.2.2.3 Application information 38

3.2.3 The profile description . 40

3.2.3.1 Text creation . 40

3.2.3.2 Language usage . 41

3.2.3.3 Text description . 41

3.2.3.4 Text classification 43

3.2.3.5 The participant description 44

3.2.4 The revision description . 45

3.3 Filling in the header . 45

3.3.1 Full header template . 45

3.3.2 Value sets for header standard information 48

3.3.2.1 Alphabetical list of value sets 51

3.3.3 Additional value sets for text classification 84

4 Text formatting 85

What an annotated text should look like

4.1 Basic considerations . 86

4.1.1 Motivation . 86

4.1.2 Format requirements . 86

4.1.3 Consequences . 87

4.2 Formatting text . 87

4.2.1 A source sample to be formatted 87

4.2.2 Bad: Formatting against the requirements 87

4.2.3 Good: Formatting according to the requirements 88

4.2.3.1 From source version to base format 88

4.2.3.2 Annotations . 90

4.2.3.3 Putting base format and annotation layers together 93

4.2.3.4 Additional information in the base version 93

4.2.3.5 What happens to the source version of a text? . . . 94

4.2.3.6 Format requirements revisited 94

4.2.4 Example . 94

Contents 5

4.2.4.1 Tokenization and layers of annotations 94

III Collecting 97

5 Processing text 98

Bringing texts into good shape

5.1 Implementation . 99

5.1.1 Web-services . 99

5.1.1.1 Demo Application 101

5.1.2 Web-services and Java . 101

5.2 Header constructor: make-header 102

5.2.1 Description . 102

5.2.2 Implementation . 103

5.2.3 Use . 103

5.3 Pre-tokenizer: pretokenize . 113

5.3.1 Description . 113

5.3.1.1 List of punctuation characters 114

5.3.2 Implementation . 115

5.3.3 Use . 116

5.4 Text id registry: register-text . 118

5.4.1 Description . 118

5.4.2 Implementation . 118

5.4.3 Use . 119

5.5 id dispatcher: make-id . 121

5.5.1 Description . 121

5.5.2 Implementation . 121

5.5.3 Use . 122

5.6 Word and paragraph counter: count-units 123

IV Markup 124

6 Survey of POS taggers 125

Approaches to making words tell who they are

6.1 Requirements . 126

6.2 Survey . 127

6.2.1 Universal taggers . 127

6.2.2 Taggers for Danish . 132

6.2.3 Conclusions . 133

6.3 Case study . 134

6.3.1 Building a token-based HMM 134

6.3.2 Building a lexicon-based HMM 135

Contents 6

7 Design of the ePOS tagger 136

Making words tell who they are

7.1 Modifications of the PAROLE Corpus 137

7.1.1 Sentences . 137

7.1.2 Tokens and token boundaries 138

7.1.3 Other PAROLE modifications 139

7.2 The ePOS tag set for Danish . 139

7.2.1 Tag structure . 140

7.2.2 POS markers and subclassifiers in ePOS 142

7.2.2.1 Class tags . 142

7.2.2.2 Lexical elements and inflectional endings 142

7.2.2.3 Word formation elements 143

7.2.2.4 PAROLE’s residual group in ePOS 143

8 The full-form lexicon 147

Same word, different versions

8.1 Enhancing existing material . 148

8.1.1 ONC-Flexion . 148

8.1.1.1 Description . 148

8.1.1.2 ePOS adaption . 150

8.2 Anatomy of the ePOS lexicon . 151

8.3 Inflectional paradigms . 151

8.3.1 Nouns . 151

8.3.2 Lexical and inflectional elements 151

V Deployment 153

9 Corpus specifications 154

The ingredients

9.1 Corpus composition . 154

9.2 Text material . 155

9.2.1 Wikipedia . 155

9.3 Corpus access . 155

10 Corpus access 156

Some usage scenarios

10.1 Ways of accessing the corpus . 157

10.2 Some usage scenarios . 157

References 158

Bibliography 159

Part I

Introduction

7

Chapter 1

Aim and concepts
Sketching the world of corpora

Deliverables concerned

This chapter concerns the DK-CLARIN work package 2.1 Reference corpus of gen-

eral language as well as corpus projects carried out by Det Danske Sprog- og Lit-

teraturselskab, dsl.dk. An overview of project-specific deliverables, that is project

tasks, is given in Section 1.2.

8

http://dsl.dk

1.1. Aim of the project 9

Outline

This chapter gives an overview of DK-CLARIN work package 2.1 Reference corpus

of general language as a whole and sketches major concepts of this work package

and corpus projects carried out by DSL in general.

1.1 Aim of the project . 9

1.1.1 Reference corpus . 9

1.1.2 CMRS framework . 10

1.2 Project tasks and documentation outline 12

1.3 Text collection, text bank, corpus 16

1.3.1 Text collection/archive/repository 17

1.3.2 Text bank . 17

1.3.3 Corpus . 17

1.1 Aim of the project

The aim of the project1 is twofold:

Corpus: Gather a reference corpus of general Danish according to certain design

principles.

To achieve this goal, it is necessary to develop a framework for managing the con-

struction process of corpora. This leads to the second aim:

Framework: Establish a Corpus Management and Retrieval System (CMRS) as a

framework for building and analyzing corpora. The result of this is an in-

house (DSL) collection of methods, tools, and means of structured data stor-

age, together with this comprehensive documentation. The CMRS concept

established in WP 2.1 aims at being transferable to other corpus manage-

ment and retrieval scenarios.

1.1.1 Reference corpus

The reference corpus of general Danish that is gathered as part of this DK-CLARIN

project (WP 2.1) comprises 45 million running tokens and is textually mixed, al-

though – as a matter of rather limited resources – texts from periodicals like news-

papers and magazines are preferred as they are more straightforward to process

especially if they come in some kind of XML format as is the case for texts from

one of DSL’s main sources, Infomedia.2

1Throughout the documentation the project refers to DK-CLARIN work package 2.1, i.e. building

a reference corpus of general language.
2http://infomedia.dk/

http://infomedia.dk/
http://infomedia.dk/

1.1. Aim of the project 10

Metadata The texts of the corpus are provided with metadata given as XML-

formatted headers. These ensure that texts can be filtered according to

different textual parameters. However, the level of detail is restricted to the

general information attached to the material when it is received from the

text supplier.

Markup The tokens of the material are tagged with information on lemma forms,

part-of-speech, and inflectional markers.

Accessibility A copy of the corpus is included in the DK-CLARIN repository of re-

sources and tools. It is made publicly accessible through a web-based con-

cordancer as well.3

1.1.2 CMRS framework

As the Corpus Management and Retrieval System is an essential prerequisite for

the accomplishment of the project – working as its “corpus factory” –, we will start

with an overview of this system and give a brief description of its components.

Figure 1.1 shows the compositional structure or “architecture” of the CMRS.

The figure follows largely the Fundamental Modeling Concepts framework, FMC.

However, some minor modifications have been made to a few symbols of the no-

tation framework, in particular, the symbol for read/write access to a storage (two

rounded unidirectional arrows in FMC) has been replaced by a strong white bidi-

rectional arrow that consumes less space and can be applied more flexibly. FMC’s

channel concept (usually denoted by a small circle) has been replaced by a some-

what broader concept of interfaces through which communication between com-

pound components working together as a system and other systems or users out-

side take place. Figure 1.2 shows the types of interfaces used in this notation.4

As illustrated in Figure 1.1, the major data repository of the CMRS is the text

bank that holds four different types of data: a collection of the texts themselves,

a collection of metadata describing the general characteristics of each individual

text, a collection of annotations providing various linguistic information on text

token level, and finally supplier details providing information on contacts, text de-

liverances, and agreements. The text bank is fed with textual material from text

suppliers through import handlers, that is, transducers that convert the various

text formats into the specific one(s) needed in the CMRS. Texts may be manually

complemented with metadata through a metadata editor, the same goes for sup-

plier details. Annotating the text material with linguistic information is performed

by the corpus processing unit that utilizes linguistic data drawn from external re-

sources and processed by lexical transducers. The corpus processing unit also ex-

tracts formatted corpora according to different structural specifications that may

3The corpus will be included as a stand-alone corpus in KorpusDK and should be publicly avail-

able under ordnet.dk/korpusdk from winter 2013-14.
4See www.fmc-modeling.org for a quick introduction and pointers to further reading.

http://www.fmc-modeling.org/
http://ordnet.dk/korpusdk
http://www.fmc-modeling.org/

1.1. Aim of the project 11

Import handlers

Indexed
corpora

Metadata editor Corpus processing unit
Corpus retrieval

system

Linguistic
data

Formatted
corpora

Export handlers

Texts Annotations

Metadata
Supplier
details

T
e

x
t

b
a

n
k

Lexical transducers

C
o

rp
u

s
 M

a
n

a
g

e
m

e
n

t
a

n
d

 R
e

tr
ie

v
a

l
S

y
s
te

m

DK-CLARIN
repository

W
e

b
 s

e
rv

e
r

CLARIN end users

External users

DDO
PAROLE

etc.

Data suppliers

Text suppliers

Admin LexicographersCorpus Editors

Internal users

Figure 1.1: Major components and interfaces of the CMRS

M H

M M

Machine-Human Interface

Machine-Machine Interface

Data Flow Direction

Figure 1.2: Symbols for various types of interfaces

1.2. Project tasks and documentation outline 12

be exported through export handlers. Finally, the corpus processing unit produces

indexed corpora that can be deployed to external/internal users through a corpus

retrieval system – a corpus search engine like a concordancer for example. The dif-

ference between formatted and indexed corpora is that formatted corpora are for-

matted in accordance with a (TEI) schema of some kind and contain text samples

possibly together with metadata and some sort of linguistic annotations on token

level. In contrast, indexed corpora are made searchable in some sort of search en-

gine. Metadata and annotations may be searchable as well as may be additional

lexical data derived from the material, e.g. different types of frequency lists, collo-

cations, or other statistical material.

1.2 Project tasks and documentation outline

In order to achieve the major aims of the project, that is building a CMRS and use it

for gathering a reference corpus, a number of steps to perform were defined in the

original project plan5 where the result of each of these steps is termed deliverable.

Some of these steps are directly related to the design and construction of the cor-

pus, others are mainly related to establishing the CMRS. So the list of steps to be

taken constitutes an unordered to-do list rather than reflecting the sequential pro-

cess of either building a CMRS or applying it to “assemble” corpora. As opposed to

the list of deliverables, the present documentation is structured in order to reflect

the sequential process of making a corpus from the design phase, over collecting

and markup, to final deployment.

In the following, the steps/deliverables of the original plan are listed together

with references to the chapters in this book where the corresponding documenta-

tion – that serve as deliverable reports – can be found. The documentation proper

gives further pointers to the tools and resources.6

D1 Text registry DSL as well as DSN collect Infomedia text material, parts of

which are likely to be included in the WP 2.1 corpus. Therefore, a way of

registering texts needs to be established. A registry allows tracing and elimi-

nating possible duplicate texts. The text registry functionality is part of the

CMRS. Outcome: Report.

⊲ Chapter 2

D2 Tokenizer A consistent and easy-to-use token concept needs to be defined.

The token concept has important implications on the design of the tok-

enizer tool and the POS-tagger applied in WP 2.1. Outcome: Tool and report.

5http://korpus.dsl.dk/clarin/wp21/wp21-arbejdsplan-old.pdf
6The CMRS itself is not considered a DK-CLARIN deliverable as it is not possible to fully imple-

ment it due to limited resources. Instead accounts of its different components is given in this book.

Based on the documentation, it should be straightforward for other, similar projects to reuse some

of the design considerations applied.

http://korpus.dsl.dk/clarin/wp21/wp21-arbejdsplan-old.pdf
http://korpus.dsl.dk/clarin/wp21/wp21-arbejdsplan-old.pdf

1.2. Project tasks and documentation outline 13

⊲ Chapter 4

⊲ Chapter 5

D3 Decision on text bank system A text bank system is necessary for project-

internal text administration. Investigations of different approaches to such

a system will be carried out. Two general options seem viable – either one

based on a relational db or on an XML db. The text bank system is the core

component of the CMRS. Outcome: Report.

⊲ Chapter 2

D4 Text supplier registry A registry of active and potential text suppliers needs to

be designed as an integrated component of the CMRS. Outcome: Report.

⊲ Chapter 2

D5 Implementation of text bank system The chosen text bank approach (see D3)

implemented (possibly with a GUI) as component of the CMRS. Outcome:

Report and a project-internal service.

⊲ Chapter 2

D6 Processing of Infomedia text Conversion to the DK-CLARIN format and text

bank import of Infomedia material collected by DSL and DSN in 2008 and

2009. Outcome: Report.

⊲ Chapter 5

D7 Development of format transducers Design and development of transducers

capable of transforming all supplier formats into the WP2.1 text format.

Outcome: Report and project-internal services.

⊲ Chapter 5

D8 Processing of other text Collected text material is converted and inserted into

the text bank component of the CMRS. Outcome: Report.

⊲ Chapter 5

D9 Full-form lexicon Development and/or configuration of a full-form lexicon

for POS tagging. Outcome: Resource with documentation.

⊲ Chapter 8

1.2. Project tasks and documentation outline 14

D10 Lemmatizer It is considered indispensable that corpus texts need to indicate

the lemma form of each inflected word form in the corpus to let the user of

the corpus perform more flexible queries. Therefore, it is necessary to ei-

ther develop or configure a lemmatizer (that may be based on a full-form

lexicon or a morphological analyzer). In the context of WP 2.1, a lemmatizer

designed as an integral part of a POS tagger is the preferable solution. Out-

come: Tool with documentation.

⊲ Chapter 6

⊲ Chapter 7

⊲ Chapter 8

D11 POS tagger In order to tag tokens in corpus texts with part-of-speech infor-

mation, it is necessary to either develop or configure a POS tagger (either

based on a full-form lexicon or a morphological analyzer) and a suitable tag

set. Outcome: Tool with documentation.

⊲ Chapter 6

⊲ Chapter 7

⊲ Chapter 8

D12 Download service Implementation of download option for copyright-

cleared or scrambled text material. Outcome: None. Cancelled due to

project cutbacks.

D13 TEI transducer The original plan for WP 2.1 was based on the assumption

that the repository of potential corpus texts – the corpus text bank – most

likely would have a non-XML structure (relational db). In order to make

interchange of texts easy and in order to make them fit into the intended

resource repository of DK-CLARIN, the development of a transducer that

could reshape the texts and metadata stored in the corpus text bank to valid

TEI XML seemed necessary. However, during the course of the project, it

became clear that the text bank itself should be implemented as an XML

database so that the texts could be stored in their final TEI XML format.

Therefore, the task of developing a transducer became a task of defining an

appropriate subset of TEI in order to suit the metadata and text format needs

of DK-CLARIN. Outcome: Report.

⊲ Chapter 3

⊲ Chapter 4

⊲ Chapter 5

1.2. Project tasks and documentation outline 15

D14 Prototype of concordance tool A web-based concordance tool needs to be

configured/implemented as a prototype for testing. Outcome: Report.

⊲ Chapter 10

D15 Panel of test users Constitution of a panel of test users. Outcome: None.

Cancelled due to project cutbacks.

D16 User tests Performing and evaluating user tests of web-concordancer. Out-

come: None. Cancelled due to project cutbacks.

D17 Final version of concordance tool Web-based concordancer with public ac-

cess. Outcome: Service with documentation.

⊲ Chapter 10

D18 Final version of corpus Final version of POS-tagged corpus of 45 million

words available for the DK-CLARIN repository and accessible through a

web-based (or other) concordance tool. Outcome: Resource with docu-

mentation.

⊲ Chapter 9

As already mentioned above, the chapters do not follow the order of steps/deliverables

but instead a more general structure as the process of building a corpus can be

subdivided into four phases:

1. Design: Textual metadata must be determined as well as annotations on

other textual levels. A repository for storing the text material – a text bank –

needs to be designed and implemented as part of the CMRS. Designing a

text bank includes designing the representation of text data.

The following chapters cover the design phase of the project:

⊲ Text metadata: Chapter 3

⊲ Text formatting: Chapter 4

⊲ Text bank: Chapter 2

These chapters cover the following tasks/deliverables of the project:

⊲ D 1 – D 5 and D 13

2. Collecting: This phase covers negotiations with potential text suppliers, the

conversion of text material gathered in a myriad of odd formats into the

standard format defined during the design phase, and finally storing it in

the text bank. It also covers the task of manually adding missing metadata.

The following chapter covers the phase of collecting material:

1.3. Text collection, text bank, corpus 16

⊲ Text processing: Chapter 5

A chapter on text acquisition would be desirable as well, however, as this

documentation focuses on the technical aspects of building a corpus, it has

been left out.

This chapter covers the following tasks/deliverables of the project:

⊲ D 2, D 6 – D 8, and D 13

3. Markup: Texts that have been converted to the standard format are ready to

have various types of annotations added. In this project, all words in a text

are tagged with the following types of annotations: A standardized ortho-

graphic form of the word, its lemma form, its part of speech as well as some

inflectional information. In order to carry out these types of markup, certain

tools need to be developed and/or configured as part of the markup phase.

The following chapters cover the markup phase:

⊲ Survey of POS taggers: Chapter 6

⊲ Design of the jaPOS tagger: Chapter 7

⊲ The full-form lexicon: Chapter 8

These chapters cover the following tasks/deliverables of the project:

⊲ D 9 – D 11

4. Deployment: Deploying the corpus means to make it accessible for end-

users, either through a corpus retrieval system of some kind that needs to

be developed/configured, or by distributing the text files, that make up the

corpus, in a standard format.

The following chapters cover the markup phase:

⊲ Corpus specifications: Chapter 9

⊲ Forthcoming PAROLE version 2 documentation

⊲ Forthcoming Corpus retrieval software (CoREST) documentation

⊲ Corpus access: Chapter 10

This chapter covers the following tasks/deliverables of the project:

⊲ D 14 and D 17

1.3 Text collection, text bank, corpus

This Section aims at giving some clarification on the concepts text collection, text

bank, and corpus, of which the two latter play an important role in the CMRS.

1.3. Text collection, text bank, corpus 17

1.3.1 Text collection/archive/repository

A text collection is a collection of complete or abridged texts of any kind collected

by a project or institution/company. The purpose of collecting the material may be

documentation or archiving in general for purposes not yet defined – and often,

corpus construction is not considered an option at all. As a consequence of not

having specified an explicit purpose for the text collection other than maybe doc-

umentation, the process of collecting is often opportunistic rather than guided by

certain corpus-compositional principles. The texts of a text collection may carry a

well-defined minimum of annotations on text level. Based on these annotations,

a subset of text items may be exported from the the archive. An archive may be

a structured means of storage, e.g. a database holding the texts in some general-

ized format.7 However, there does not need to be any structured means of storage

– the material may reside unordered in a file system and may be composed of texts

with various incompatible formats. In relation to the CMRS, it may be considered

text material that has not yet been imported into the CMRS but is stored in other

accessible locations and formats.

1.3.2 Text bank

Whereas a text collection still may be rather unstructured, a text bank is an im-

plementation geared to storing and retrieving texts to be potentially included in

linguistic corpora. So, in contrast to a text collection, the explicit purpose of the

texts gathered in a text bank is to be able to build corpora from them. It allows

to better process and organize potential corpus text material.8 Therefore, a text

bank requires an elaborate structure: Texts of a text bank must carry well-defined

meta-information (e.g. expressed as an XML-formatted header), they must follow

a well-defined format, that is, they should be tokenized and each token should

have a unique reference ID in order to be addressed unambiguously. A text bank

provides furthermore interfaces/handlers through which texts and metadata can

be added and through which texts can be selected for export as a corpus in an ap-

propriate format. Corpus query functions for linguistic investigation are not part

of the text bank, but are features of separate corpus query and statistics tools. The

text bank is first and foremost a tool for text and corpus administration.

1.3.3 Corpus

A corpus is a group of text items from a text bank that have been selected due to

explicit criteria based on the information given in the meta-data part of a text item.

The purpose of a corpus is to allow certain linguistic investigations as it is assumed

that the corpus (text items as whole) constitutes a representative sample of the sort

7Examples of text collections are The Oxford Text Archive and Arkiv for Dansk Litteratur.
8The text bank must not be confused with the general DK-CLARIN repository developed in WP 5

that is supposed to support various data types (e.g. texts, images, lexicons) and various formats to

be used in various contexts, not just corpus construction.

http://www.ota.ox.ac.uk/
http://www.adl.dk

1.3. Text collection, text bank, corpus 18

of language to be investigated. Each text item in a corpus either carries the same

meta-data that are used in the text bank or a subset of them, e.g. only those that are

relevant for the corpus in question. A corpus can be supplemented with meta-data

describing its characteristics, e.g. the purpose of it and the selection criteria for the

texts it is comprised of. Corpus texts usually carry several token annotation layers,

e.g. an orthographically normalized version of the token, a lemmatized form of

it, POS information, inflectional information. A corpus of this type can be made

accessible for queries in a concordancer or it may be used to be processed by other

corpus tools, e.g. for statistical purposes.

Part II

Design

19

Chapter 2

The text bank
A platform for managing text collections

DRAFT VERSION

Deliverables concerned

D1 Text registry DSL as well as DSN collect Infomedia text material, parts of

which are likely to be included in the WP 2.1 corpus. Therefore, a way of

registering texts needs to be established. A registry allows tracing and elimi-

nating possible duplicate texts. The text registry functionality is part of the

CMRS. Outcome: Report.

D3 Decision on text bank system A text bank system is necessary for project-

internal text administration. Investigations of different approaches to such

a system will be carried out. Two general options seem viable – either one

based on a relational db or on an XML db. The text bank system is the core

component of the CMRS. Outcome: Report.

D4 Text supplier registry A registry of active and potential text suppliers needs to

be designed as an integrated component of the CMRS. Outcome: Report.

D5 Implementation of text bank system The chosen text bank approach (see D3)

implemented (possibly with a GUI) as component of the CMRS. Outcome:

Report and a project-internal service.

20

2.1. Introduction 21

Outline of this chapter

This chapter gives an account of the text bank, that is, of its intended functions

as text repository and administrative registry as well as its implementation. The

db software should be able to store and give multi-user access to XML text doc-

uments, manage text supplier data, and facilitate the detection of duplicate text

material. This chapter also serves as documentation for WP 1.10 and 1.21 as

described in Asmussen (2008).

2.1 Introduction . 21

2.2 Implementation . 21

2.2.1 XML vs. relational db systems 21

2.2.2 eXist – the text bank system by choice 22

2.3 Features . 23

2.3.1 Text repository . 23

2.3.2 Text registry . 23

2.3.3 Text supplier registry . 23

2.4 Alternative approaches . 23

2.1 Introduction

Crucial for composing corpora is a repository of texts from which texts according

to a specific profile can be selected. The corpus itself is considered a separate re-

source. This repository is intended to contain corpus-suitable texts with certain

textual metadata expressed in a systematic way that can be expressed as XML, see

Chapter 3. A repository of this kind is called a text bank.1 A text bank may provide

some administrative functions as well like handling text supplier information.

In the following, the implementation of the text bank is described in further

detail. This is followed by a description of the text registry and the text supplier

registry functionality, see Figure 1.1.

2.2 Implementation

2.2.1 XML vs. relational db systems

The fundamental units of a corpus are text items drawn from a text repository. A

repository containing potential corpus texts in a standardized text and metadata

format only is called a text bank. As corpus texts to be included in the text bank

are XML-formatted according to a specific schema, see chapter 3 and chapter 4, it

1See also Section 1.3.2.

2.2. Implementation 22

seems obvious to store them in an XML database. Moreover, it is necessary to be

able to access and edit these fundamental text units with a viewer/editor.

Storing the text material in a relational database would require substantial pro-

cessing of the material prior to database import and export. As such, conversion

procedures introduce an extra amount of resources and complexity, they must be

considered error-prone in terms of appliance and maintenance. Therefore, it ap-

pears obvious to apply an XML-based db solution. An overview of XML databases

can be found on Wikipedia.

To minimize software expenditures, only open source products have been ex-

amined. Among these, projects with low or none obvious development activities

were rejected, that is Xindice, myXMLDB, ozone. Sedna could be a candidate, but

it is obviously not supported by the oXygen XML editor, the same seems to be the

case for MonetDB and BaseX. After these exclusions the only candidate left is eXist.

2.2.2 eXist – the text bank system by choice

2.2.2.1 Advantages

⊲ Native XML db

⊲ Easy to install and maintain

⊲ Built-in indexing (automatic and user-defined) which means quick searches

⊲ XQuery is used to manipulate data

⊲ Theoretically unlimited document size. So far, the 13,5 MB DK-PAROLE Cor-

pus has been the largest document uploaded

⊲ Can store up to 231 documents

⊲ Accessible from the oXygen editor

⊲ Easy to set up as a web service. This should make it straightforward to

– have the eXist-based text bank to fit into the envisaged DK-CLARIN

infrastructure

– develop a stand-alone text bank interface and skip the oXygen editor

2.2.2.2 Disadvantages

So far, the following disadvantage could be identified:

Non-commercial project: As for most software development projects of this kind,

there is no guarantee for continuous development as well as support may be

unreliable.

http://en.wikipedia.org/wiki/XML_database#Databases_known_to_support_XML:DB_API_.28XAPI.29
http://xml.apache.org/xindice/news.html
http://myxmldb.sourceforge.net/
http://www.ozone-db.org/frames/news/news.html
http://modis.ispras.ru/sedna/index.htm
http://monetdb.cwi.nl/projects/monetdb//Home/
http://basex.org/
http://exist.sourceforge.net/

2.3. Features 23

This disadvantage should be taken into account for future development. In par-

ticular, web services probably should not be based entirely on eXist’s XQuery in-

terface but should be encapsulated by a self-developed web service interface that

accesses eXist but could be changed to access other db

2.2.2.3 Current implementation and set-up

The CTB is located in the eXist XML document collection /db/ctb as data repos-

itory and an oXygen editor as a basic user interface which communicates with

the data repository by means of a oXygen-eXist db connection. The oXygen editor

will be replaced by a dedicated viewer/editor during the project period. The eXist

service is installed on the host ja-korpus.dsl.lan until a more convenient

solution is available.

2.2.2.4 User Interfaces

2.3 Features

2.3.1 Text repository

2.3.2 Text registry

2.3.3 Text supplier registry

2.4 Alternative approaches

ja-korpus.dsl.lan

Chapter 3

Text metadata
What the header of a text item looks like1

Deliverables concerned

D13 TEI transducer The original plan for WP 2.1 was based on the assumption

that the repository of potential corpus texts – the corpus text bank – most

likely would have a non-XML structure (relational db). In order to make

interchange of texts easy and in order to make them fit into the intended

resource repository of DK-CLARIN, the development of a transducer that

could reshape the texts and metadata stored in the corpus text bank to valid

TEI XML seemed necessary. However, during the course of the project, it

became clear that the text bank itself should be implemented as an XML

database so that the texts could be stored in their final TEI XML format.

Therefore, the task of developing a transducer became a task of defining an

appropriate subset of TEI in order to suit the metadata and text format needs

of DK-CLARIN. Outcome: Report.

1A header/text template can be downloaded from:

http://ctb.dsl.dk/templates/formatsample.xml
The corresponding XML schema is available at:

http://dkclarin.dk/schemas/WP2
Schema read-me file available at:

http://dkclarin.dk/schemas/WP2/README_TEIP5DKCLARIN_validation.pdf

24

http://ctb.dsl.dk/templates/formatsample.xml
http://dkclarin.dk/schemas/WP2
http://dkclarin.dk/schemas/WP2/README_TEIP5DKCLARIN_validation.pdf

Text metadata 25

Outline of this chapter

This chapter describes how the metadata part of text items can be expressed by

means of a TEI P5 header whereas Chapter 4 describes the text part proper. One

major aim of the header design described in this chapter is to integrate header

information from text items in existing corpora of Danish language, i.e. the Corpus

of the Danish Dictionary and PAROLE-DK, KORPUS 2000, other corpus-relevant

material from DOT/DSL, as well as the LGP and LSP corpora of written Danish

which are compiled as part of DK-CLARIN.

3.1 Concepts . 26

3.2 Header structure . 27

3.2.1 The file description . 28

3.2.2 The encoding description 37

3.2.3 The profile description 40

3.2.4 The revision description 45

3.3 Filling in the header . 45

3.3.1 Full header template . 45

3.3.2 Value sets for header standard information 48

3.3.3 Additional value sets for text classification 84

Guide to reading this chapter

The structure of the header is oriented towards that one used by the BNC Burnard

(2007) and PAROLE-DK Keson (1998b) but tries to avoid idiosyncrasies not covered

by TEI P5 as well as modifications of the TEI header schema.

Section 3.1 summarizes some corpus linguistic concepts used throughout the

DK-CLARIN project, which are described in further detail in Chapter 1.

Section 3.2 gives a general account of the header structure of headers of text

items to be included in the Corpus Text Bank, CTB.2 The description of the CTB

header structure is in its starting point strongly inspired by that one given in

Burnard (2007). This section constitutes the major part of this chapter.

Section 3.3 starts with a complete header template and describes in detail the

sets of values that have to be used to fill in the header. It can be used as a manual

for those who have to fill in text headers with appropriate information, either man-

ually or automatically by converting and mapping existing material. This section

2The CTB is a text repository of written texts that are candidates to be included in a linguistic

corpus. The CTB has been developed by WP 2.1 in order to better process and organize potential

corpus text material, see III. It must not be confused with the general DK-CLARIN repository devel-

oped in WP 5 that is supposed to support various data types (e.g. texts, images, lexicons) and various

formats.

3.1. Concepts 26

is probably too detailed for those readers who just want the more general lines of

how the CTB header is composed and may therefore be skipped by most readers.

3.1 Concepts

A text item consists of a text potentially to be included in a corpus, and of some

metadata about the text. The metadata is typically contained in a header which

precedes the text proper.3 A text item is the smallest chunk of text plus metadata

in a repository of potential corpus texts – a corpus text bank – from which text

items are selected for inclusion in a specific corpus. Thus, a text item is the small-

est corpus-compositional unit. The text part of a text item is either a complete text

(usually a shorter one) or a sample taken from a longer text, e.g. a chapter from

a book, see Chapter 1. Longer texts, e.g. novels, are divided into smaller parts,

e.g. chapters, before they are included in a corpus text bank. A corpus text bank

may be considered as a somewhat more specialized kind of text archive, intended

to contain all kinds of corpus-relevant text chunks. The reason why longer texts

are chopped into smaller chunks is that this subsequently makes corpus compo-

sition more precise as text-typological fine-tuning becomes easier – a novel, for

instance, is less likely to skew the intended balance of a corpus if it can be selected

from the text bank in smaller quantities, e.g. chapter-wise.

This chapter describes the header structure of text items collected in the Cor-

pus Text Bank (CTB) – a corpus text bank for all kinds of written corpus-relevant

texts collected as part of the DK-CLARIN project’s work package 2.1: “Basic writ-

ten language resources –– Reference corpus of general language”. Text items from

the CTB may be included in one or more specific corpora intended for linguistic

research. A corpus is a more organized collection of texts compiled on the basis of

the text bank for a specific – i.e. linguistic – purpose. Text material being collected

for literary purposes or as part of an electronic library (archive) may stress other

features of the TEI header proposal. Here, the header structure is adopted to the

specific needs of corpus texts.

Text item headers are structured by means of TEI P5. In the following, this

structure adapted to the needs of structurally integrating various existing corpora

or text collections is described in detail. The collections to be structurally inte-

grated are the Corpus of the Danish Dictionary (DDOC, Norling-Christensen and

Asmussen (1998)), PAROLE-DK (Keson (1998a) and Keson (1998b)), KORPUS 2000

(Andersen et al. (2002)), other corpus-relevant material from DOT/DSL and Dansk

Sprognævn (DSN), as well as the LGP and LSP corpora of written Danish which are

compiled as part of DK-CLARIN.4

3Another solution would be to store the metadata in a separate database and establish a link

between text and metadata.
4Text material from the Arkiv for Dansk Litteratur (ADL) and other archives may at a later stage

be integrated as well, if the header structure of their texts can be mapped to that one described here.

3.2. Header structure 27

The TEI header structure provides extremely flexible means of expressing tex-

tual metadata. A wealth of information can be given in a more or less fine-grained

way. The following Section 3.2 describes a header that exactly accommodates the

needs of potential corpus texts. In many cases, TEI allows the header to be mod-

ified either by augmenting or simplifying it. However, a header with more or less

information is still compatible with the model described here as long as its struc-

ture does not conflict with TEI P5 syntax (and semantics) requirements.

Therefore, the following section does not describe a TEI header in general, but

the specific header of a potential corpus text in the Corpus Text Bank of WP 2.1,

expressed by means of TEI.5

3.2 Header structure

The header of a text item provides a structured description of the text contents,

analogous to the title page and front matter of a book. Every separate text item in

the Corpus Text Bank has its own header <teiHeader type="text">. In ad-

dition, a corpus itself may have a header <teiHeader type="corpus"> con-

taining information which is applicable to the whole corpus. The corpus header

is not part of this description. To a large extent, a corpus header would be an

abridged and slightly modified version of a text header. Furthermore the corpus

header should contain the declaration of value sets for various elements (e.g. a do-

main taxonomy for LSP texts). The Corpus Text Bank contains value declarations

in form of a collection of certain value set files which may be referenced by the

CTB header. The content structure of the Corpus Text Bank is described in detail

in Chapter 2 The value set files proper are described in detail in Section 3.3.2.

The remainder of this section describes the components of the <teiHeader
type="text"> element as used within the Corpus Text Bank. A TEI header con-

tains a file description (Section 3.2.1), an encoding description (Section 3.2.2), a

profile description (Section 3.2.3), and a revision description (Section 3.2.4), rep-

resented by the following four elements:

<fileDesc> (file description) contains a full bibliographic description of an

electronic text as well as the source from which it was derived.

<encodingDesc> (encoding description) documents the relationship between

an electronic text and the source from which it was derived.

<profileDesc> (text-profile description) provides a detailed description of

non-bibliographic aspects of a text, specifically the languages and sublan-

guages used, the situation in which it was produced, the participants and

their setting.

5The header design has been adopted for text resources to be included in the DK-CLARIN repos-

itory developed by WP 5.

3.2. Header structure 28

<revisionDesc> (revision description) summarizes the revision history for a

file.

3.2.1 The file description

The file description <fileDesc> is the first of the four main constituents of the

header. It is intended to document a digital file. It contains the following four sub-

divisions:

<titleStmt> (title statement) groups information about the title of a work rep-

resented in the electronic text sample and those responsible for its intellec-

tual content.

<extent> specifies the size of the electronic text sample in number of words

and paragraphs (and other countable units).

<publicationStmt> (publication statement) groups information concerning

the publication or distribution of the electronic text sample.

<notesStmt> (notes statement) collects together any notes providing informa-

tion about a text additional to that recorded in other parts of the biblio-

graphic description.

<sourceDesc> (source description) supplies a description of the source text

from which the digital text sample was derived.

Further detail for each of these is given in the following subsections.

3.2.1.1 The title statement

The title statement<titleStmt> element of a text item contains one <title>
element, followed by one <sponsor> and one <respStmt> element as shown

in the following pattern:

<titleStmt>
<title>
samplingDeclaration textTitle

</title>
<sponsor>sponsorName</sponsor>
<respStmt>
<resp>Data capture</resp>
<name>organizationName
<note type="method">captureMethod</note>
<date when="captureYear"/>

</name>
</respStmt>

</titleStmt>

3.2. Header structure 29

The content of the <title> element is an initial caption (samplingDeclaration),

e.g. “CTB version of:”,6 followed by the title of the source text (textTitle). Thus, the

contents of the title element resemble that one used in PAROLE-DK: “Tagged sam-

ple of: ‘textTitle’ ”. As the CTB virtually can contain both tagged (even differently

tagged) and untagged text, any statements about whether the text is tagged in

some respect or not must not be made in the <title> element but should be

given as application information, see Section 3.2.2.3.

The <title> element is followed by a <sponsor> element indicating the

name of the sponsoring organization or institution.7 According to the TEI guide-

lines, sponsors give their intellectual authority to a project; they are to be distin-

guished from funders, who provide the funding but do not necessarily take intel-

lectual responsibility. The<sponsor> content of material captured as part of the

DK-CLARIN project is “DK-CLARIN”. Texts which were captured in other projects

(and made available to DK-CLARIN) have their own specific <sponsor>content.

A <respStmt> element is used to indicate each institution responsible for

any significant effort in the creation of the electronic text sample. The CTB header

has only one responsibility statement indicating the responsibility for original

data capture. The name of the responsible institution is given as an constant string

for each institution in a<name> element. The<note> element of type “method”,

subordinate to <name> gives an indication of how the text was captured, e.g. by

scanning or typing. Finally, the year of data capture is given as a four-digit date

(or a complete date) as the value of the when attribute in the <date> element

subordinate to <name>.

PAROLE-DK’s header does neither include sponsor nor responsibility in-

formation, whereas the BNC uses lots of <respStmt> elements with great

verbosity. In PAROLE-DK, this information instead is virtually part of the

<publicationStmt> assuming that the distributor is always the same as

the organization responsible for data capture (and is the sponsor). Here, it is

assumed that the sponsor, the collector, and the distributor are of central impor-

tance and that it cannot be taken for granted that these decisive roles are played by

one organization only. However, it is assumed that these roles are fully sufficient

to describe the institutional background of a potential corpus text. Additional

roles may come into play for a whole corpus or text collection and must be part of

the headers of these resources.

OBS! Author and editor information for the source from which a text is derived

(e.g. the author of a book) is not included in the <titleStmt> element but in

the <sourceDesc> element discussed below in Section 3.2.1.5.

6Other samplingDeclaration captions are acceptable as well. A complete list is given in

Section 3.3. The chosen caption must always be identical to the string value given in the

<samplingDecl> element, see Section 3.2.2.1. In the example given, CTB stands for Corpus Text

Bank.
7An alternative (and probably more appropriate) expression instead of sponsor would be initia-

tive.

3.2. Header structure 30

3.2.1.2 The extent statement

The <extent> element is used in each text header to specify the size of the text

to which it is attached. The size is given as the number of words in the <num>
element, the n attribute is set to “words”. In another <num> element with the n

attribute set to “paragraphs” the number of paragraphs is stated.8 Other <num>
elements measuring extent in other units may be added, but must be registered as

part of the legal inventory described in Section 3.3:

<extent>
<num n="words">numberOfWords</num>
<num n="paragraphs">numberOfParagraphs</num>

</extent>

The count given does not include the size of the header itself. The number of words

and paragraphs must be mechanically computed prior to insertion of the text into

the text bank.

3.2.1.3 The publication statement

The <publicationStmt>element is used to specify publication and availabil-

ity information for an electronic text. It contains the following three elements:

<distributor> supplies the name of a person or agency responsible for the

distribution of a text.

<availability> supplies information about the availability of a text, for ex-

ample any restrictions on its use or distribution, its copyright status, etc.

<idno> (identifying number) supplies an identifying code for a text.

<publicationStmt>
<distributor>organizationName</distributor>
<idno type="textIdType">textId</idno>
<availability status="availStatus">
<ab type="availGroup">availDesc anonymisationDesc</ab>
<ab type="availGroup">availDesc anonymisationDesc</ab>
<ab type="availGroup">availDesc anonymisationDesc</ab>

</availability>
</publicationStmt>

The <distributor> element contains the name of the organization9 respon-

sible for the distribution of the electronic text sample. Usually there can only be

8This is a necessary extent information particularly for texts which are to be included in parallel

corpora.
9In DK-CLARIN this will typically be a member of the DK-CLARIN consortium.

3.2. Header structure 31

one distributor for each text even though TEI allows to repeat this element as of-

ten as needed. The inventory of strings denoting distributors should be invariant,

i.e. one name only per distributor.

The obligatory CTB text id is given as contents of an <idno type="ctb">
element. Some dialects of TEI introduce an attribute id of the <TEI> element

which is illegal according to strict TEI. Other types of text, project-, or institution-

internal identifications may be given in additional <idno> elements whose type

attributes indicate the specific type of id.

The text strings in <ab> (‘anonymous block’)10 elements given under

<availability> for both restricted (attribute status is set to “restricted”)

and free (attribute status is set to “free”) give availability information for three

fixed user categories: academic users, non-commercial users, and all types of

users.

Academic users are defined as users who are affiliated with the DK-CLARIN con-

sortium.

Non-commercial users are academic users not affiliated with the DK-CLARIN

consortium, users from educational or governmental institutions.

All users are any type of users including commercial users.

The DK-CLARIN license committee has finally, i.e. at the end of the project, con-

cluded that the types of licenses should be employed: public, academic and re-

stricted and that licenses are to be managed outside text headers. However, WP 2.1

will stick to the categories and values described above.

The following pattern shows the substructure of the <availability> ele-

ment:11

<availability status="restricted">
<ab type="academic">
<seg type="availDesc">availDesc</seg>
<seg type="anonymDesc">anonymDesc</seg>

</ab>
<ab type="nonCommercial">
<seg type="availDesc">availDesc</seg>
<seg type="anonymDesc">anonymDesc</seg>

</ab>
<ab type="all">
<seg type="availDesc">availDesc</seg>

10This type of elements is preferred to the alternative <p> which is semantically misleading –

these are no paragraphs but blocks of information.
11The <availability> element requires subordinate <p> or <ab> elements thus inhibiting

more meaningfully structured availability information. The cumbersome typed <ab> and <seg>
elements thus seem to be the only way of expressing structured availability information, unless

TEI P5 is modified.

3.2. Header structure 32

<seg type="anonymDesc">anonymDesc</seg>
</ab>

</availability>

The various values are defined in Section 3.3. Two types of values are given in

two subordinate <seg> elements: The availability description availDesc and a

description of how to anonymize private information associated with the text,

anonymDesc. If availability for any user category is other than “full” or any kind

of anonymization is required, that is if anonymDesc is other than “nothing” (i.e.

value “0”), the availability status attribute is set to “restricted”, otherwise it is set to

“free”.

TEI allows a <date> element as part of <publicationStmt>; however, it

is left out here, as the CTB version of a text cannot be said to having been published

at a given time. Text bank texts may undergo changes (e.g. annotations are mod-

ified, more detailed info is given in the header) some of which are time-stamped

in the revision description of the header, see Section 3.2.4, so the texts can never

be said to be final, but they are available at all times in the shape they have at a

given point in time. However, they may be published as part of a corpus, hence

the <date> element under <publicationStmt> should be part of the corpus

header.

3.2.1.4 The notes statement

The <notesStmt> contains one or more <note> elements, each containing a

single piece of descriptive information, which does not fit into other parts of the

header. Each <note> element carries an obligatory xml:lang attribute indicating

the language of the note as well as a resp attribute denoting the organization re-

sponsible for this note, that is, the organization that has authored this note:

<notesStmt>
<note xml:lang="languageId"
resp="organizationName">note</note>

</notesStmt>

3.2.1.5 The source description

The <sourceDesc> element is used to supply bibliographic details for the

original source material from which an electronic text sample derives. In

the case of DK-CLARIN corpus texts, this may be a book, pamphlet, news-

paper, etc. or an electronic source of some (non-TEI) format. Within the

<sourceDesc> element several sub-structures are available according to

TEI. Here, the <biblStruct> sub-structure is used in almost the same way as

in PAROLE because it imposes a fixed structure on the bibliographic description

and, most importantly, because it allows to distinguish between information

3.2. Header structure 33

concerning the text proper and information concerning the edition (e.g. book,

newspaper) from which the text was drawn:

<sourceDesc>
<biblStruct>
[...]

</biblStruct>
</sourceDesc>

The <biblStruct> element contains the following three elements:

<analytic> (analytic level) contains bibliographic elements describing an

item (e.g. an article or poem) published within a monograph or journal and

– according to the TEI guidelines – not as an independent publication. In

the CTB headers, though, it is used for independent publications as well,

see below.

<monogr> (monographic level) contains bibliographic elements describing an

item (e.g. a book or journal) published as an independent item (i.e. as a sep-

arate physical object).

<idno> (identifying number) supplies any standard or non-standard number

used to identify a bibliographic item.

<relatedItem> may contain a reference to some other bibliographic item re-

lated to the present one in some specified manner, for example as a transla-

tion of it. However, the use of this element is deprecated as the quality and

quantity of relationships between texts may vary depending on the perspec-

tive of the user, therefore they should not be treated as a fixed information

in the header of a text. Instead, various relation files should be introduced

that relate any number of texts to each other in any way. The format of these

relation files should be defined in a technical report. The substructure of the

deprecated <relatedItem> is:

<relatedItem type="relatedType">
<bibl>

<title xml:lang="languageId">relatedTitle</title>
<idno type="ctb">relatedId</idno>

</bibl>
</relatedItem>

It must be placed as last element in <biblStruct> and it may be repeated as

many times as necessary.

The complete substructure of <biblStruct> looks as follows:

<biblStruct>
<analytic>

3.2. Header structure 34

<title xml:lang="languageId"
level="titleLevel">textTitle</title>

<author>
<name ref="#personId">surname, forename</name>

</author>
<respStmt n="translators">
<resp>Translated by</resp>
<name ref="#personId">
surname, forename

</name>
</respStmt>

</analytic>
<monogr>
<title xml:lang="languageId">editionTitle</title>
<editor>
<name ref="#personId">surname, forename</name>

</editor>
<imprint>
<publisher n="publId">publHouse</publisher>
<date when="publDate" cert="certainty"/>
<biblScope type="issue">edIssue</biblScope>
<biblScope type="sect">edSect</biblScope>
<biblScope type="vol">edVolume</biblScope>
<biblScope type="chap">edChapter</biblScope>
<biblScope type="pp">edPages</biblScope>

</imprint>
</monogr>
<idno type="uri">textUri</idno>
<idno type="file">textFileName</idno>
<relatedItem type="relatedType">
<bibl>
<title xml:lang="languageId">relatedTitle</title>
<idno type="ctb">relatedId</idno>

</bibl>
</relatedItem>

</biblStruct>

According to the TEI guidelines,

[in] common library practice a clear distinction is usually made

between an individual item within a larger collection and a free-

standing book, journal, or collection. Similarly a book in a series is

distinguished sharply from the series within which it appears. An

article forming part of a collection which itself appears in a series thus

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CO.html

3.2. Header structure 35

has a bibliographic description with three quite distinct levels of in-

formation: the analytic level, giving the title, author, etc. of the article;

the monographic level, giving the title, editor, etc. of the collection;

the series level, giving the title of the series, possibly the names of its

editors, etc. and the number of the volume within that series.12

The aim of the bibliographic information for texts which are intended to be in-

cluded in a corpus, that is the type of texts collected in the Corpus Text Bank, is

not to imitate the precision of a librarian but to give an easy way of referring to

texts and to probably use bibliographic information in some corpus searches as

well. This requires a rather fixed and to some extent rigid structure of the biblio-

graphic part of the header which is the reason why the <biblStruct> structure

is used here and not one of the other (less structured) possibilities of TEI. The

<biblStruct> structure can be used to distinguish between the three infor-

mation levels discussed above in the TEI guideline snippet. Here, only two of the

levels are used, namely the analytic and the monographic level. The <monogr>
element in the <biblStruct> structure is obligatory. According to TEI, it seems

that in the case of a text being monographic, the <analytic> part of the struc-

ture should be left out and the text title and author information should be given

within the <monogr> part of the structure. However, in the CTB headers, the

<analytic> part is considered obligatory, no matter whether the text is part of

a collection of some kind, i.e. analytic, or a stand-alone publication, i.e. mono-

graphic. This is to ensure that all <biblStruct> elements in CTB headers have

the same structure, that text title and author information is always found in the

same place, that is in the obligatory <analytic> part of the structure.

Within the<analytic> structure,<title> always gives the title of the text.

If the text is part of a collection, e.g. a newspaper article which is part of a news-

paper, the level attribute of <title> is set to “a” which means analytic, whereas

the<title> element in<monogr> gives the title of the collection, e.g. the name

of a newspaper. If the text is a free-standing book, e.g. a novel, the level attribute

is set to “m” meaning monographic; in such cases the <title> element in the

<monogr>part is left empty. All<title>elements carry the obligatory attribute

xml:lang indicating the language of the title.

The author of a text is always given in <author> in the <analytic>part of

<biblStruct>. There is one <author> element for each author who has con-

tributed to the document. The name of the author is given in a <name> element.

If the name has been decomposed into forename and surname, the information

is given as surname, forename(s), otherwise the comma is left out. If the name of

the author is unknown, the <name> element is filled in with an unknown sym-

bol (see Section 3.3), if it for some reason is anonymous, the <name> element is

filled in with the string “anonymous”. A <name> element should have a ref at-

tribute giving an XML reference to a corresponding <person> element in the

12See http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CO.html.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CO.html

3.2. Header structure 36

<profileDesc> part of the header where additional info concerning the au-

thor(s) is given, see Section 3.2.3.5.13

PAROLE has no participant description as part of the profile description. In-

stead, PAROLE augments TEI by adding two arguments (gender and born) to the

<author> element. In contrast to PAROLE, the CTB header defers from altering

the TEI proposal.

The <author> element is followed by a <respStmt> with an obligatory

attribute n carrying the constant value “translators” that contains the name(s)

of the person(s) who has/have translated this text if it is a translation, oth-

erwise <respStmt> is filled in with the empty symbol, see Section 3.3. The

<respStmt> element contains an obligatory <resp> element with the fixed

string “Translated by” and a subsequent <name> element of type “translator”

gives the name of the translator. If there is more than one translator, additional

<name> elements are used.14 If the translation has been carried out by a com-

pany or the like, the name of the company is given. The <name> elements may

carry a ref attribute giving a reference to a corresponding <person> element in

the <profileDesc> part of the header where additional info concerning the

translator(s) may be given. This <name> element is of special relevance to texts

which may be included in parallel corpora. More on translated texts can be found

under the description of the <derivation> element in Section 3.2.3.3.

In the <monogr> part, the title of the collection is given if the text is part of a

collection, otherwise it is left empty. The name of the editor is given in a <name>
element as surname, forename(s); if it is undeterminable how to decompose the

name into forename(s) and surname, the comma is left out. If there are more than

one editor, each of them is given in its own <editor> element. If there is no edi-

tor, the <name> element of <editor> carries an empty symbol, see Section 3.3.

The<name> elements may carry a ref attribute giving a reference to a correspond-

ing <person> element in the <profileDesc> part of the header where addi-

tional info concerning the editor(s) may be given.

In the <imprint> part of <monogr>, the name of the publishing house is

given in the element <publHouse>,15 the obligatory date of publishing as value

of the when attribute of <date>, either the year or – in the case of newspapers –

the year, month, and day according to the pattern yyyy-mm-dd. The cert attribute

13It may seem odd that the ref attribute is given on the <name> element and not on the

<author> element which would have been an option. However, as ref attributes also are used

with translators and editors and neither the <respStmt> element used for translators nor the

<editor> element are allowed to carry a ref attribute, it is instead attached to the <name> ele-

ment in all these cases.
14It may seem inconsequent to repeat the<name> element for each translator whereas in case of

the author and editor, the corresponding <author> and <editor> elements are repeated. How-

ever, as there obviously is no <translator> element in TEI, and as <respStmt> cannot carry

a type attribute, repetition of the semantically rather empty <respStmt> element with its oblig-

atory subordinate <resp> element (giving the semantics) seems much too awkward and would

furthermore increase the complexity of queries.
15This element may be repeated if more publishers are to be listed.

3.2. Header structure 37

of <date> tells the certainty of the date which can either be “high” or “low”. If the

exact date is not known, an estimate is given and the cert attribute is set to “low”.

<imprint> includes five <biblScope>elements of different types which have

to be filled in with the appropriate types of information, see Section 3.3. If a certain

type of information does not apply to the publication described, it is left empty.

The <monogr> part of the structure is followed by an <idno> element of

type “uri”16 where a web pointer to the text can be given, i.e. the location from

which it can be or has been downloaded. Other possible types are “isbn” and

“issn”. If it for some reason seems necessary to register the ISBN or ISSN, <idno>
elements of the corresponding types can be added as well.

Another <idno> element of type “file” follows. As texts in most cases are de-

livered as electronic files, a back-reference to this source file is made by stating its

filename and if necessary the path to it in this element. The file itself should be

kept in an archive maintained by the organization which collected that particular

text.17 It may be necessary to leave out some information from material delivered,

e.g. formatting, figures, tables, etc. In other cases, one single source file may con-

tain a longer text that has to be chopped into smaller chunks. Being able to locate

the source file ensures that certain completions or corrections can be made to the

CTB file at a later point in time, if necessary.

3.2.2 The encoding description

The second major component of the TEI header is the encoding description

<encodingDesc>. This contains information about the relationship between

an encoded text and its original source.

The CTB <encodingDesc>element has the following sub-elements:

<samplingDecl> (sampling declaration) contains a description of the method

used in sampling the text.

<projectDesc> (project description) describes the aim or purpose for which

an electronic file was encoded.

<appInfo> (application information) records information about the applica-

tions which have processed the text of the TEI file.

3.2.2.1 The sampling declaration

The<samplingDecl>element gives an indication of how the text was sampled,

the indication is put in an<ab> element. The indication is a string from a fixed set.

16It might seem weird to place the URI of a text here. However, as there does not

seem to be another adequate element to put this information, common practice ob-

viously is to do it in this manner, see http://colab.mpdl.mpg.de/mediawiki/
TEI_Bibliographic_Information.

17In the case of DK-CLARIN WP 2.1 all original texts are kept on the ja-korpus.dsl.lan
server under /Volumes/Data/textrepository.

http://colab.mpdl.mpg.de/mediawiki/TEI_Bibliographic_Information
http://colab.mpdl.mpg.de/mediawiki/TEI_Bibliographic_Information

3.2. Header structure 38

It must always be completely identical to the initial caption given in the<title>
of <titleStmt>, see Section 3.2.1.1.

<samplingDecl>
<ab>CTB version of:</ab>

</samplingDecl>

3.2.2.2 The project description

The <projectDesc> element gives an indication of the aim of collecting and

encoding that particular text, i.e the corpus or text collection project or process:

<projectDesc>
<ab>projectIdentifier</ab>

</projectDesc>

In the case of new texts captured by WP 2.1 of the DK-CLARIN project, the value

of projectIdentifier is “DK-CLARIN-WP2.1”. Similar fixed contents are defined for

other relevant DK-CLARIN projects and for other finished projects like DDOC or

KORPUS 2000, see Section 3.3.

3.2.2.3 Application information

The <appInfo> element gives information about all applications or other (man-

ual) procedures by which the text sample has been enriched with markup. The

header itself may also be manipulated by such applications or procedures, but

this is not registered in the <appInfo> element – this may however be recorded

under <revisionDesc>, see Section 3.2.4. The application information helps

determining whether texts are structurally comparable, i.e. texts that have been

processed by the same bundle of applications and procedures should be struc-

turally identical.

The <appInfo> element should be filled in with one empty dummy-

application if the file just contains the default-segmented (i.e. pre-tokenized)

version of the text, the so-called base version, however the whole <appInfo>
structure may be left out in this case as well.18 The following example shows an

<appInfo>with one empty dummy-application. The values given are explained

further in Section 3.3.2.

<appInfo>
<application xml:id="app_nil"
type="nil"
subtype="nil"
ident="nil"

18Leaving <appInfo> out is recommended by DK-CLARIN WP 5.

3.2. Header structure 39

version="99999999"
n="nil"
when="99999999">
<desc>nil</desc>
<ptr target="#app_nil"/>
<ref target="#opt_nil"/>

</application>
</appInfo>

Otherwise, there is one <appInfo> element for each annotation layer belonging

to the text in the file, see 4. The general structure is as follows:

<appInfo>
<application xml:id="appXmlId"
type="appType"
subtype="appTool"
ident="appId"
version="appVersionNumber"
n="appMode"
when="appDate">
<desc>appDesc</desc>
<ptr target="#appXmlId"/> (may be left out)
<ref target="#appOptionFile"/> (optional)

</application>
</appInfo>

The <application> element has the following attributes:

xml:id unique XML identifier which is referenced by the corresponding annota-

tion layer in the text.

type specifies both the task (segmentation, annotation) and whether it was per-

formed by an automatic application or a manual procedure (or a combina-

tion of both).

subtype gives a further description of the applied tool taken from a fixed list of

options.

ident supplies a unique identifier for the application/procedure.

version supplies a version number for the application/procedure. The version

specification may contain other characters than digits, however it must

match the following regular expression:
[\d]+[a-z]*[\d]*(\.[\d]+[a-z]*[\d]*){0,3}. 19

19It may seem weird to apply version numbers to manual procedures. However, the version at-

tribute is mandatory in TEI and also manual procedures may alter over time and should in any case

be thoroughly documented – that is versioned.

3.2. Header structure 40

n gives supplementary info about the applied tag set or tokenization mode.

when gives the date when the application was executed on the text.

The <application> element contains an element <desc> giving a free-text

description of the application.

The element <ptr> within <application> references that/those appli-

cation/applications whose output has been used as input for the application in

question as annotations can be added as layers on each other, cf. Chapter 4. This

element is left out if an annotation refers to the base version of the text and not to

another annotation layer.

Finally, the optional <ref> element may reference certain resources a given

tool has been using in cases where this is important.

3.2.3 The profile description

The third component of a TEI header is the profile description <profileDesc>.

In the CTB, this is used to provide the following elements:

<creation> contains information about the creation of a text.

<langUsage> (language usage) describes the languages, sublanguages, registers,

dialects etc. represented within a text.

<textDesc> (text description) provides a description of a text in terms of its situa-

tional parameters.

<textClass> (text classification) groups information which describes the nature

or topic of a text in terms of a standard classification scheme, thesaurus, etc.

<particDesc> (participation description) describes the identifiable speakers,

voices, or other participants in a linguistic interaction.

3.2.3.1 Text creation

The element <creation> is provided to record details of a text’s creation, in the

CTB header just the date it was composed, i.e. writing on it was finished; it should

not be confused with the <imprint> element, where the date of the publication

of the (source) text is recorded. In many cases the date, that is the year when a

text was finished, is not known: in these cases the date is set to the same as under

<imprint> and the value of the attribute cert is set to “low” instead of “high”.

Here is the patten:

<creation>
<date when="textCreationYear" cert="certainty"/>

</creation>

3.2. Header structure 41

3.2.3.2 Language usage

The<languageUsage>element contains the element<language>where the

(dominant) language of the text is indicated by the attribute ident. Language codes

are constructed as defined in BCP 4720, the language notation standard to use

should be ISO 639-121.22 Particularly for sublanguages, an informal prose char-

acterization should be supplied as content for the element. Language usage is ex-

pressed by the following XML pattern:

<langUsage>
<language ident="languageId">
languageCharacterization

</language>
</langUsage>

3.2.3.3 Text description

The overall intention of using this part of the TEI proposal is to establish a struc-

ture that can contain text descriptions which can be applied to every potential

corpus text. The structure is considered general and mandatory for every text in

the CTB and information from this structure can be used to extract corpora from

the CTB. Specialized textual information, which only may apply to some texts, is

gathered in the <textClass> part of the header, see Section 3.2.3.4. Also, the

amount of specialized textual information may vary from text to text.

The <textDesc> element characterizes each text according to the following

eight situational parameters, each represented by one of the following eight ele-

ments:

<channel> (primary channel) describes the medium or channel by which a

text is delivered or experienced. For a written text, this might be print,

manuscript, e-mail, etc.; for a spoken one, radio, telephone, face-to-face,

etc. The mode attribute describes the mode of the channel with respect to

speech or writing.

<constitution> describes the internal composition of a text or text sample,

for example as fragmentary, complete, etc.

20http://tools.ietf.org/html/bcp47
21http://www.sil.org/iso639-3/codes.asp. OBS! Select View by 639-1.
22At first glance, ISO 639-3 may seem a better choice as it provides more than 6900 language

codes, also for dialects and historic languages. However, Danish seems only weakly represented in

this standard. Danish authorities should probably get more involved in this standardization work.

For DK-CLARIN purposes some of the private areas of this standard could be utilized. Maybe an

issue for DK-CLARIN WP 1? Therefore, in the current headers, additional linguistic information may

be given in a private BCP 47 extension with regional and historical tags (which needs to be defined).

http://tools.ietf.org/html/bcp47
http://www.sil.org/iso639-3/codes.asp
http://tools.ietf.org/html/bcp47
http://www.sil.org/iso639-3/codes.asp

3.2. Header structure 42

<derivation> describes the nature and extent of originality of this text, that is,

in the CTB header, just an indication of whether it has been translated from

another language.

<domain> (domain of use) describes the most important social context in which

the text was realized or for which it is intended, for example education, reli-

gion, business etc.

<factuality> describes the extent to which the text may be regarded as imagi-

native or non-imaginative, that is, as describing a fictional or a non-fictional

world.

<interaction> describes the number of those producing and experiencing

the text.

<preparedness> describes the extent to which a text may be regarded as pre-

pared or spontaneous

<purpose> characterizes a single purpose or communicative function of the

text, e.g. whether it is informative, expressive, etc.

By default, a text description will contain each of the above elements, supplied in

the order specified. In the CTB, the <textDesc> pattern looks as follows:

<textDesc>
<channel mode="tdChannelMode">tdChannel</channel>
<constitution type="tdConstitutionType"/>
<derivation type="tdDerivationType">
<lang>languageId</lang>

</derivation>
<domain type="tdDomainDiscourse">tdDomain</domain>
<factuality type="tdFactualityType"/>
<interaction active="tdInteractActive"
passive="tdInteractPassive">
<note type="interactRole">tdInteractRole</note>
<note type="interactAge">tdInteractAge</note>

</interaction>
<preparedness type="tdPrepType"/>
<purpose type="tdPurposeType"/>

</textDesc>

Some of the elements given in the<textDesc>pattern contain further specified

information:

The <derivation> element has a subordinate element <language>
which indicates the original language of the text; if the text is not translated,

3.2. Header structure 43

the original language is identical to that indicated under <langUsage>, see

Section 3.2.3.2.

The <interaction> element contains two subordinate <note> elements,

one of them indicating the roles of the participants in the communication, that

is, whether they are experts or laymen; the other <note> element gives the

ages of addressor and addressee. Using a <note> element for giving further

interaction-related information is not an optimal solution. A straighter way is to

use special elements for the needed purposes or to augment the attribute list of

the <interaction>element. However, this would require a modification of the

TEI grammar.

More info on this part of the header can be found in Section 3.3.

3.2.3.4 Text classification

Texts may be described along many dimensions, according to many different tax-

onomies. No generally accepted consensus as to how such taxonomies should be

defined has yet emerged. To accommodate special needs, TEI allows to express

more specialized text characteristics by the following elements:

<catRef> (category reference) provides either a list of codes or one single code

identifying the categories to which the text has been assigned, each code

referencing a category element declared in the corpus header or under a

separate, invariant URL. In CTB, there is one <catRef> element for each

dimension, the type of dimension is indicated by the (referencing) value of

the attribute scheme. CTB does not use lists of codes.

<classCode> contains the classification code used for the text in some stan-

dard classification system. There is one <classCode> element for each

classification system.

Using <catRef> is the preferred way to give additional textual classifications in

all cases where the classification system follows a CTB-internal standard. The pat-

tern to be applied is as follows:

<textClass>
<catRef scheme="myClassification" target="myValue"/>

</textClass>

The<catRef> element is repeated for each classification dimension used. If sev-

eral values are given within the same classification dimension, <catRef> elements

with the same classification scheme are repeated.

In cases where an official classification system is applied, the <classCode>
element is used instead. More values within the same scheme are given by repeat-

ing <catRef> elements. The <catRef> and <classCode> elements should

be used according to the following, invented, example:

3.2. Header structure 44

<textClass>
<catRef scheme="dk-clarin.eu/ctb/agerel" target="#a-c"/>
<catRef scheme="dk-clarin.eu/ctb/domain" target="#med"/>
<catRef scheme="dk-clarin.eu/ctb/domain" target="#bio"/>
<catRef scheme="dk-clarin.eu/ctb/genre" target="#ad"/>
<classCode scheme="official.classfication.eu">xyz</classCode>

</textClass>

3.2.3.5 The participant description

The participant description (<particDesc>) element is used to provide addi-

tional information about authors (or speakers) of texts. The element itself is con-

sidered obligatory in the CTB header, however, its contents may just be an empty

<person> element which is given as a placeholder to ensure that the header

has a valid TEI structure. If additional personal info is given, one <person> el-

ement for each participant having been involved in creating the text is inserted

into <particDesc>.23 The <person> element carries a number of attributes

which are used to provide encoded values for some key aspects of the person con-

cerned, see the following example:24

<particDesc>
<person xml:id="personId"
role="creatorRole"
age="creatorAge"
sex="creatorSex">
<birth>
<date when="creatorBirth" cert="certainty"/>

</birth>
</person>

</particDesc>

The DDOC material mentioned in Section 3.1 has a lot more information on

each text creator, e.g. his place of birth which could be expressed as an element

<placeName> under <birth>, his place of residence which could be put into

an element <residence> as sibling to <birth>, and so on. However, corpus-

linguistic practice has shown that this type of information hardly ever is used (nor

useful if it is not given according to clear-cut classification schemes). Therefore,

new material should not be marked-up with this kind of information that is also

extremely costly to gather. For DDOC (and other material) which already carries

this type of information, appropriate structural elements of <person> should

be included into the header to allow keeping this information for possible future

investigation, see Chapter ??.

23A possible empty placeholder <person> element may then be deleted.
24More details of which values to fill in can be found in Section 3.3.

3.3. Filling in the header 45

3.2.4 The revision description

A list of typical revisions which a document will undergo should be created, i.e. val-

ues for revisionType. At least the revision type “Document created” seems impor-

tant. Others, which deal with the completeness of the header may be useful as

well. The pattern of the revision description is as follows:

<revisionDesc>
<change when="revisionDate"
who="organizationName">revisionType

</change>
</revisionDesc>

The revision description must not be confused with the application information

discussed in Section 3.2.2.3.

3.3 Filling in the header

3.3.1 Full header template

In the following, a complete version of the CTB header template is shown. Its four

main constituents and their subdivisions are separated by horizontal lines to fa-

cilitate orientation:

<teiHeader type="text">

<fileDesc>
<fileDesc>

<titleStmt>
<titleStmt>

<title>samplingDeclaration textTitle</title>
<sponsor>sponsorName</sponsor>
<respStmt>
<resp>Data capture</resp>
<name>organizationName

<note type="method">captureMethod</note>
<date when="captureYear"/>

</name>
</respStmt>

</titleStmt>

<extent>
<extent>

<num n="words">numberOfWords</num>
<num n="paragraphs">numberOfParagraphs</num>

</extent>

<publicationStmt>
<publicationStmt>

<distributor>organizationName</distributor>
<idno type="textIdType">textId</idno>
<availability status="availStatus">

3.3. Filling in the header 46

<ab type="academic">
<seg type="availDesc">availDesc</seg>
<seg type="anonymDesc">anonymDesc</seg>

</ab>
<ab type="nonCommercial">

<seg type="availDesc">availDesc</seg>
<seg type="anonymDesc">anonymDesc</seg>

</ab>
<ab type="all">

<seg type="availDesc">availDesc</seg>
<seg type="anonymDesc">anonymDesc</seg>

</ab>
</availability>

</publicationStmt>

<notesStmt>
<notesStmt>

<note xml:lang="languageId"
resp="organizationName">note</note>

</notesStmt>

<sourceDesc>
<sourceDesc>

<biblStruct>
<analytic>

<title xml:lang="languageId"
level="titleLevel">textTitle</title>

<author>
<name ref="#personId">surname, forename</name>

</author>
<respStmt n="translators">

<resp>Translated by</resp>
<name ref="#personId">surname, forename</name>

</respStmt>
</analytic>
<monogr>

<title xml:lang="languageId">editionTitle</title>
<editor>

<name ref="#personId">surname, forename</name>
</editor>
<imprint>

<publisher n="publId">publHouse</publisher>
<date when="publDate" cert="certainty"/>
<biblScope type="issue">edIssue</biblScope>
<biblScope type="sect">edSect</biblScope>
<biblScope type="vol">edVolume</biblScope>
<biblScope type="chap">edChapter</biblScope>
<biblScope type="pp">edPages</biblScope>

</imprint>
</monogr>
<idno type="uri">textUri</idno>
<idno type="file">textFileName</idno>
<relatedItem type="relatedType">

<bibl>
<title xml:lang="languageId">relatedTitle</title>

3.3. Filling in the header 47

<idno type="ctb">relatedId</idno>
</bibl>

</relatedItem>
</biblStruct>

</sourceDesc>
</fileDesc>

<encodingDesc>
<encodingDesc>

<samplingDecl>
<samplingDecl>

<ab>samplingDeclaration</ab>

</samplingDecl>

<projectDesc>
<projectDesc>

<ab>projectIdentifier</ab>
</projectDesc>

<appInfo>
<appInfo>

<application xml:id="appXmlId"
type="appType"
subtype="appTool"
ident="appId"
version="appVersion"
n="appMode"
when="appDate">
<desc>appDesc</desc>
<ptr target="#appXmlId"/>
<ref target="#appOptionFile"/>

</application>
</appInfo>

</encodingDesc>

<profileDesc>
<profileDesc>

<creation>
<creation>

<date when="textCreationYear" cert="certainty"/>
</creation>

<langUsage>
<langUsage>

<language ident="languageId">
languageCharacterization

</language>
</langUsage>

<textDesc>
<textDesc>

<channel mode="tdChannelMode">tdChannel</channel>
<constitution type="tdConstitutionType"/>
<derivation type="tdDerivationType">
<lang>languageId</lang>

</derivation>
<domain type="tdDomainDiscourse">tdDomain</domain>
<factuality type="tdFactualityType"/>

3.3. Filling in the header 48

<interaction active="tdInteractActive"
passive="tdInteractPassive">
<note type="interactRole">tdInteractRole</note>
<note type="interactAge">tdInteractAge</note>

</interaction>
<preparedness type="tdPrepType"/>
<purpose type="tdPurposeType"/>

</textDesc>

<textClass>
<textClass>

<catRef scheme="myClassification" target="myValue"/>
<classCode scheme="theirClassification">theirValue</classCode>

</textClass>
<particDesc>

<person xml:id="personId"
role="creatorRole"
age="creatorAge"
sex="creatorSex">
<birth>

<date when="creatorBirth" cert="certainty"/>
</birth>

</person>
</particDesc>

</profileDesc>

<revisionDesc>
<revisionDesc>

<change>
<change when="revisionDate"

who="organizationName">revisionType
</change>

</revisionDesc>
</teiHeader>

3.3.2 Value sets for header standard information

When filling in the header with standard information about the text, some types

of information may be undetermined or non-existent, e.g. the name of an author

may be simply missing in the header for some reason, that is, it is undetermined, or

a text may not have a title, that is, its title is non-existent. Such incomplete parts of

the header could be left out in these cases if permitted by TEI, however, leaving out

such parts would obscure whether the information is missing because it is unde-

termined or because it is non-existent. If the information is undetermined, efforts

should be undertaken to occasionally add it, otherwise, if it is non-existent, such

efforts would be waste of time. In order to distinguish these two cases, it is rec-

ommended to always explicitly state non-existent information by filling in empty

for string and symbol values, 0 (= zero) for integers, and 1000 in the case of years

(and dates),25 in other words never to leave these parts of a header out. However,

25The value 1000 for dates is necessary in order to comply with the TEI data type date that does

not allow a value of 0.

3.3. Filling in the header 49

if the information is undetermined, these parts of a header may be left out indi-

cating that the missing information occasionally should be added or be marked as

non-existent if that is the case.

So in the case of undetermined information, it is legal to skip the respective

part of the header if allowed by TEI; however, for the sake of completeness, it is

strongly recommended to state nil in case of string values and 9999999926 in the

case of integers and dates to indicate that this particular information obviously is

missing and should be added if it does exist or, if it turns out that the information

definitely does not exist, it should be marked as non-existent. To sum up, the fol-

lowing constant symbols are used as values for header elements and attributes,

unless otherwise stated further below in this section:27

Symbol Type Meaning

empty

anonymous

String

Names

Info is non-existent

Person is unknown

0 Integer Info is non-existent

1000 Date/Year Info is non-existent

nil String Info has not been

determined yet

99999999 Integer and Date/Year Info has not been

determined yet

In all other cases, that is in cases where the desired information is available,

the values listed in Section 3.3.2.1 are used replacing the header variables indi-

cated in the full header template above. For each of these variables a description

is given followed by an overview of its properties and – in the case of enumerated

sets – a list of legal values. In cases where these lists are too comprehensive, they

are replaced by a link to an XML version of them. All value sets are also accessi-

ble as XML files and may be referenced automatically or manually when filling in

headers. All value set files are found under the pathhttp://korpus.dsl.dk/
clarin/corpus-doc/text-header/. The filenames themselves are given

below.28 The structure of the XML value set files is as shown in the following ex-

tract. The structure has been designed for this specific purpose (i.e. it is not TEI)

and it should be fairly self-explanatory:

26In former versions of the documentation the ‘undetermined’ value was 1 (minus one). How-

ever, TEI does not always allow a negative value for some of its integer datatypes which is the reason

why it has been replaced.
27In cases where TEI does not allow the undetermined/non-existent values defined here, the

elements of the value sets are restricted to those that are accepted by TEI. This is the case for

the following attributes: cert in <date>, sex in <person>, mode in <channel>, type in

<factuality>, level in <title>.
28As these are XML files, a web browser may not show them well formatted. Viewing them as

HTML source may help though.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/
http://korpus.dsl.dk/clarin/corpus-doc/text-header/

3.3. Filling in the header 50

<?xml version="1.0" encoding="UTF-8"?>
<valuesetCollection

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://korpus.dsl.dk/clarin/corpus-doc/
text-header/valuesetCollection.xsd">

<set name="captureMethod" type="symbol">
<element>

<value>nil</value>
<desc>Info has not been determined yet</desc>

</element>
<element>

<value>empty</value>
<desc>Info is irrelevant, non-existent, or undeterminable</desc>

</element>
<element default="true">

<value>file</value>
<desc>The source of the text is an electronic file</desc>

</element>
<element>

<value>ocr-raw</value>
<desc>The text is OCR-scanned but not proof-read</desc>

</element>
<element>

<value>ocr-proof</value>
<desc>The text is OCR-scanned and proof-read</desc>

</element>
<element>

<value>keyed-raw</value>
<desc>The text is manually keyed but not proof-read</desc>

</element>
<element>

<value>keyed-proof</value>
<desc>The text is manually keyed and proof-read</desc>

</element>

[...]
</set>

</valuesetCollection>

The following properties are given for each value set:

1. The value set type gives an indication of whether the set of values is meant

to be augmented or not. It may be

enumerated, closed, which means that no further values should be added

to it

enumerated, open, meaning that one can add further values if necessary

Open and closed is a distinction only relevant to enumerated, i.e. exten-

sionally defined sets, whereas sets whose contents are intentionally defined,

i.e. by description, as a matter of fact always are open:

3.3. Filling in the header 51

descriptive can contain any description that observes the definition of the

set

2. The XML URL is a URL that points to an XML version of the value set (only

applicable for extensional value sets)

In some cases, properties are indicated as “undetermined” which means that this

information still is missing for some reason and should be added in a future ver-

sion of this chapter.

In other cases, properties are indicated as “n/a” as not applicable.

3.3.2.1 Alphabetical list of value sets

Note that some value sets are still empty as the properties they describe have

not been relevant meta-info yet. Many others may still be augmented with addi-

tional values. Please refer to the most recent version of this chapter which can be

downloaded as a technical report from http://korpus.dsl.dk/clarin/
corpus-doc/text-header.pdf.

⊲ anonymDesc

Indicator specifying what type(s) of private text information must be made

anonymous (= must not be shown).

Properties
Value set type enumerated, closed

XML name vs_anonymDesc.xml

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

0 Nothing in the text or associated with the text must be made

anonymous. Default

I Names of individuals must not be shown

P Names of places must not be shown

A Name(s) of the author(s) must not be shown

T Text title must not be shown

The values can be combined if more of them apply to a specific user group,

e.g. “IA” means that names of individuals and of the author(s) must be made

anonymous.

http://korpus.dsl.dk/clarin/corpus-doc/text-header.pdf
http://korpus.dsl.dk/clarin/corpus-doc/text-header.pdf
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_anonymDesc.xml

3.3. Filling in the header 52

⊲ appDate

The date a particular markup application/procedure was applied to the text.

Properties
Value set type descriptive

XML name n/a

Legal values Dates must follow the pattern yyyy-mm-dd.

⊲ appDesc

Free-text description of the application/procedure that has operated on the

text.

Properties
Value set type descriptive

XML name n/a

Legal values Any string.

⊲ appId

Unique version name-independent identifier of an application/procedure

that has operated on the text.

Properties
Value set type enumerated, open

XML name vs_appId.xml

Legal values

Value Description

nil Info has not been determined yet. Default

empty Info is irrelevant, non-existent, or undeterminable

LocalInfoMediaConverter Converts Infomedia text to CTB base format with

simple headers

⊲ appMode

Info about the applied tag set, tokenization mode, or configuration.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_appId.xml

3.3. Filling in the header 53

Properties
Value set type enumerated, open

XML name vs_appMode.xml

Legal values

Value Description

99999999 Info has not been determined yet

0 Info is irrelevant, non-existent, or undeterminable

da-xxx Danish language model version applied

⊲ #appOptionFile

XML pointer to information on the setup of the tool that has processed the

text.

Properties
Value set type descriptive

XML name n/a

Legal values Any string that can be used for unique XML-referencing.

⊲ appTool

Describes the (automatic or manual) tool that has operated on the text.

Properties
Value set type enumerated, closed

XML name vs_appTool.xml

Legal values

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_appMode.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_appTool.xml

3.3. Filling in the header 54

Value Description

nil Info has not been determined yet. Default

empty Info is irrelevant, non-existent, or undeterminable

pretokenizer Splits a text into word-like segments. A pretokenizer is only applied

once, all other applications are based on the pretokenized version

of the text

tokenizer Splits a text into word-like segments

s-splitter Sentence splitter. Splits the text into sentences, i.e. a segment

between two full stops or some similar type of punctuation. Inserts

<s> and </s> tags around sentence-like text segments

p-splitter Paragraph splitter. Splits the text into paragraphs. Inserts <p> and

</p> tags around paragraph-like text segments

regularizer Tags a token with a regularised version of its surface representation,

i.e. its orthography

lemmatizer Tags a token with its lemma form

pos-tagger Tags a token with part-of-speech info

morph-tagger Tags a token with morphological/inflectional info

term-tagger Tags a token with some indication of whether it is a term (in texts to

be included in LSP corpora)

multi-processor Multifunctional tool that performs various tasks like tokenizing,

lemmatizing, tagging as one complex process

other Tool performing tasks not yet listed

⊲ appType

Specifies whether an application or procedure that operated on the text was

automatic (or a combination of both) as well as the type of task of the appli-

cation/procedure in terms of segmentation or annotation.

Properties
Value set type enumerated, closed

XML name vs_appType.xml

Legal values

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_appType.xml

3.3. Filling in the header 55

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

a_segmentation Text split into smaller segments (e.g. sentences, tokens) by an

automatic process. Default

c_segmentation Text split into smaller segments (e.g. sentences, tokens) by a

combined automatic-manual process

m_segmentation Text split into smaller segments (e.g. sentences, tokens) by a manual

process

a_annotation Text segments annotated with info by an automatic process

c_annotation Text segments annotated with info by a combined

automatic-manual process

m_annotation Text segments annotated with info by a manual process

⊲ appVersion

Version specification of an application/procedure that has operated on the

text.

Properties
Value set type descriptive

XML name n/a

Legal values The version specification must start with at least one digit

but may contain other characters than digits. It must match the following

regular expression:
[\d]+[a-z]*[\d]*(\.[\d]+[a-z]*[\d]*){0,3}.

⊲ appXmlId

Unique XML identifier which is referenced by the corresponding annotation

layer (<spanGrp> element, see 4.2.3.2) in the text.

Properties
Value set type descriptive

XML name n/a

3.3. Filling in the header 56

Legal values Valid XML IDs are constructed by concatenating the appId,

an underscore, and the appVersion where dots are replaced by underscores.

⊲ availDesc

Tells how this text may be used in terms of copyright and other restrictions.

Properties
Value set type enumerated, closed

XML name vs_availDesc.xml

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

full The user has free access to the complete material, but is not allowed

to redistribute it

partial The user can search and view text contents limited to what is

specified in Danish citation law. Default

limited Access only upon written agreement between the DK-CLARIN

consortium and the user. Details of this agreement are to be further

specified

none No acces for users not affiliated with the DK-CLARIN consortium

⊲ availStatus

Attribute of the <availability> element indicating whether the text is

freely available for all user categories (cf. the header template above) or not.

Properties
Value set type enumerated, closed

XML name vs_availStatus.xml

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_availDesc.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_availStatus.xml

3.3. Filling in the header 57

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

free The text is freely available for all user categories

restricted The text is not freely available for at least one user category. Default

⊲ captureMethod

The method of data capture.

Properties
Value set type enumerated, closed

XML name vs_captureMethod.xml

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

file The source of the text is an electronic file. Default

ocr-raw The text is OCR-scanned but not proof-read

ocr-proof The text is OCR-scanned and proof-read

keyed-raw The text is manually keyed but not proof-read

keyed-proof The text is manually keyed and proof-read

double-keyed The text is double-keyed, i.e. keyed in two versions by two

individual typists, both versions are automatically compared and

manually corrected

pdf-converted-

acrobat9

Converted from PDF by Acrobat 9

pdf-converted-

pdf2xml

Converted from PDF by pdf2xml

⊲ captureYear

The year of data capture.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_captureMethod.xml

3.3. Filling in the header 58

Properties
Value set type descriptive

XML name n/a

Legal values Four-digit years which may be extended to full dates follow-

ing the pattern yyyy-mm-dd.

⊲ certainty

The degree of certainty of how precise some data, typically dates, are.

Properties
Value set type enumerated, closed

XML name vs_certainty.xml

Legal values

Value Description

high The given dates are definitely correct. Default

low The given dates are an estimate

⊲ creatorAge

The age group to which a particular author belonged at the time he/she pro-

duced the text.

Properties
Value set type enumerated, closed

XML name vs_creatorAge.xml

Legal values The age intervals are inevitably arbitrary. The “teen” interval

is consciously extended to the age of 25 to be able to better indicate young

people’s language in general. See also TEI P5.29

29http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-person.html

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_certainty.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_creatorAge.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-person.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-person.html

3.3. Filling in the header 59

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

infant A person aged 0–5

child A person aged 6–12

teen A person aged 13–25

adult A person aged 26–60. Default

senior A person aged 61 and above

⊲ creatorBirth

The year a particular author was born.

Properties
Value set type descriptive

XML name n/a

Legal values Four-digit date following the pattern yyyy.

⊲ creatorRole

The role of a particular author in terms of his or her influence on the lan-

guage of the text.

Properties
Value set type enumerated, closed

XML name vs_creatorRole.xml

Legal values For written texts:30

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

major Assigned to one single autor, translator, or editor who is assumed to

have had major impact on the language of the text. Default

minor Assigned to all other textual contributors

30The list may be augmented with values for spoken texts from the DDOC.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_creatorRole.xml

3.3. Filling in the header 60

There should only be one author, translator, or editor with “major” influ-

ence. All other contributors should be classified “minor”.

⊲ creatorSex

The sex of a particular author.

Properties
Value set type enumerated, closed

XML name vs_creatorSex.xml

Legal values From ISO 5218 : 1977 Representation of Human Sexes to

comply with TEI, see http://www.tei-c.org/release/doc/
tei-p5-doc/html/ref-data.sex.html. OBS! The values for unde-

termined (“nil”) and n/a (“empty”) differ from the CTB standard values.

Value Description

0 Unknown. Default

1 Male

2 Female

9 Not applicable

⊲ edChapter

The chapter of a book or similar edition from which the text sample is taken.

Properties
Value set type descriptive

XML name n/a

Legal values Any integer.

⊲ edIssue

The issue of a newspaper or journal from which the text sample is taken.

Properties
Value set type descriptive

XML name n/a

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_creatorSex.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-data.sex.htm
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-data.sex.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-data.sex.html

3.3. Filling in the header 61

Legal values Any string.

⊲ edPages

The range of pages the text sample spans over in the edition from which it is

taken.

Properties
Value set type descriptive

XML name n/a

Legal values Any integer or an interval of integers according to the pat-

tern: x–y where y > x. Groups of intervals are not allowed. Each text sample

in the CTB must be coherent. If several samples are taken from the same text

source, each of them has to be put into a CTB file of its own.

⊲ edSection

The section of a newspaper from which the sample is taken.

Properties
Value set type descriptive

XML name n/a

Legal values Any string.

⊲ edVolume

The volume of a book from which the text sample is taken.

Properties
Value set type descriptive

XML name n/a

Legal values Any integer.

⊲ editionTitle

The title of the edition (e.g. book, newspaper) in which the text appeared.

3.3. Filling in the header 62

Properties
Value set type descriptive

XML name n/a

Legal values Any string.

⊲ fileCreationYear

The year the electronic text sample was created.

Properties
Value set type descriptive

XML name n/a

Legal values Four-digit date which may be extended to a full date follow-

ing the pattern yyyy-mm-dd.

⊲ forename

First name(s) of a text’s author/editor/translator.

Properties
Value set type descriptive

XML name n/a

Legal values Any string. Names are always given as a string of pattern sur-

name, forename in <name> elements. If the name cannot be decomposed

into forename and surname, the name is stated without a comma. If the

text has been written/translated/edited by a company or organization, the

name of that company/organization is stated. If the name for some reason

is anonymous, the<name> element is filled in with the string “anonymous”.

⊲ languageCharacterization

Prose description of the language indicated by languageId.

Properties
Value set type descriptive

XML name n/a

3.3. Filling in the header 63

Legal values Comma-separated list of the descriptions associated with the

values applied in languageId, e.g. “Danish” if languageId is “da”. See lan-

guageId.

⊲ languageId

Code that identifies the language used in the text sample or in a <note> or

<title> tag.

Properties
Value set type enumerated, open

XML name vs_langSubId.xml

Legal values Values follow BCP 4731 and ISO 639-1.32 The language code

is constructed according to BCP 47 as follows:

langSubId [- x [- langSubHist] [- langSubRegion]]

It consists of an obligatory part with a language code langSubId according

to ISO 639-1 and an optional private extension, prefixed by the BCP 47 sub-

tag x that holds a code langSubHist for the historic period of the language in

question, and another optional part with a regional code langSubRegion. If

both optional parts are present, they must come in the order specified.

Legal values for langSubId are defined in the following subset of the ISO 639-

1 standard, however the non-standard value “xx” has been added to indicate

formalized language that may occur in the content of<note>elements, see

an example in Chapter ??.

Value Description

nil Info has not been determined yet (not part of ISO 639-1). Default

empty Info is irrelevant, non-existent, or undeterminable (not part of ISO

639-1)

da Danish

de German

en English

es Spanish

fr French

xx Formalized or constructed (not part of ISO 639-1)

31http://tools.ietf.org/html/bcp47
32http://www.sil.org/iso639-3/codes.asp. OBS! Select View by 639-1.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_langSubId.xml
http://tools.ietf.org/html/bcp47
http://www.sil.org/iso639-3/codes.asp?order=639_1&letter=%25
http://tools.ietf.org/html/bcp47
http://www.sil.org/iso639-3/codes.asp

3.3. Filling in the header 64

For each langSubId, that is for each language, a set of langSubHist and lang-

SubRegion codes can be defined; for each language the name of the lang-

SubHist and langSubRegion variables is extended with the ISO 639-1 code of

the language in question, e.g. langSubHistDa or langSubRegionDa for Dan-

ish. Legal values must be defined according to the pattern “hCode” for his-

toric codes and “rCode” for region codes, the “h” and the “r” indicating his-

toric and region respectively, whereas the “Code” part contains the code to

be used for a certain period or region. Currently no such codes are defined

for any language within the CTB framework.

⊲ myClassification

URL of a user-defined text classification.

Properties
Value set type enumerated, open

XML name vs_myClassification.xml

Legal values Any valid URL pointing to a classification scheme. Currently,

the following classification scheme URLs are defined:

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

http://ctb.dsl.dk/class/catRef/DDOC/RePr.xml

Synsvinkel (produktion, reception)

http://ctb.dsl.dk/class/catRef/DDOC/Medi.xml

Medium, channel

http://ctb.dsl.dk/class/catRef/DDOC/Genr.xml

Genre, text type

http://ctb.dsl.dk/class/catRef/DDOC/GnTy.xml

Genre type (simplified genre classification)

http://ctb.dsl.dk/class/catRef/infomedia/PSIN.xml

Infomedia PSIN topic labels

⊲ myValue

Value given in a user-defined text classification.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_myClassification.xml

3.3. Filling in the header 65

Properties
Value set type enumerated, open

XML name n/a

Legal values Legal values according to the user-defined classification.

⊲ note

Any note giving additional information about the text which cannot be ex-

pressed by other elements in the header.

Properties
Value set type descriptive

XML name n/a

Legal values Any string.

⊲ numberOfParagraphs

The number of paragraphs in the text.

Properties
Value set type descriptive

XML name n/a

Legal values Any integer.

⊲ numberOfWords

The number of word-like units, i.e. <w> elements, in the text.

Properties
Value set type descriptive

XML name n/a

Legal values Any integer.

⊲ organizationName

The name of an organization that has carried out some particular piece of

work or had some particular responsibility related to the electronic text sam-

ple.

3.3. Filling in the header 66

Properties
Value set type enumerated, open

XML name vs_organizationName.xml

Legal values

Value Description

nil Info has not been determined yet. Default

empty Info is irrelevant, non-existent, or undeterminable

cst.ku.dk Center for Sprogteknologi, KU

dsl.dk Det Danske Sprog- og Litteraturselskab

dsn.dk Dansk Sprognævn

dsl-dsn.dk DSL og DSN i fællesskab

duds.nordisk.ku.dkDigitale Undersøgelser af Dansk Sprog, INSS, KU

⊲ #personId

Id linking between the name of an author and the <person> element in

<textDesc> giving additional author information.

Properties
Value set type descriptive

XML name n/a

Legal values Any string that can be used for unique XML-referencing. The

string should contain a sequence of digits.

⊲ publDate

The publishing date of the edition in which the text appeared.

Properties
Value set type descriptive

XML name n/a

Legal values Values are given either as the year as a four-digit number, or

the year, month, and day given according to the pattern yyyy-mm-dd.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_organizationName.xml

3.3. Filling in the header 67

⊲ publHouse

The name of the publisher (company, or if self-published, the author) of the

edition in which the text appeared, or the name of the text supplier.

Properties
Value set type enumerated, open

XML names vs_publId.xml

Legal values String denoting a publisher/supplier taken from the descrip-

tion part of the lists referred to under publId below.

⊲ publId

Unique identifier of either publisher or text supplier pointing to an external

database of publishers.

Properties
Value set type enumerated, open

XML names vs_publId.xml

Legal values Integer according to specified lists maintained by WP 2.1.

Additional publisher/supplier info is found in the resource

– /db/ctb/suppliers/ctb-suppliers.xml

in the eXist-db on the ja-korpus.dsl.lan server. The publIds given in

the list above can be seen as pointers to the records with additional supplier

info.

⊲ projectIdentifier

Unique identifier of the text collection project in which this electronic text

was captured and prepared.

Properties
Value set type enumerated, open

XML name vs_projectIdentifier.xml

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_publId.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_publId.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_projectIdentifier.xml

3.3. Filling in the header 68

Legal values

Value Description

nil Info has not been determined yet. Default

empty Info is irrelevant, non-existent, or undeterminable

DK-CLARIN-

WP2.1

LGP corpus project under DK-CLARIN, 2008-2010

DK-CLARIN-

WP2.2

LSP corpus project under DK-CLARIN, 2008-2010

DK-CLARIN-

WP2.3

Renaissance corpus project under DK-CLARIN, 2008-2010

DK-CLARIN-

WP2.4

JVJ/ADL corpus project under DK-CLARIN, 2008-2010

DK-CLARIN-

WP2.5

Nationalmuseet’s corpus project under DK-CLARIN, 2008-2010

DK-CLARIN-

WP2.6

Parallel corpus project under DK-CLARIN, 2008-2010

DSL-DOT Ongoing DSL-DOT gathering

DSL-DOT-IM Ongoing DSL-DOT gathering via InfoMedia

DDOC-spoken Corpus of The Danish Dictionary, transcribed speech

DDOC-written Corpus of The Danish Dictionary, written

K2000 Material collected in the Korpus 2000 project

⊲ relatedTitle

Title of a text related to the current one.

Properties
Value set type descriptive

XML name n/a

Legal values Any string denoting a text title.

⊲ relatedType

Value stating how the text possibly is related to another text.

3.3. Filling in the header 69

Properties
Value set type enumerated, closed

XML name

Legal values

Value Description

nil Info has not been determined yet. Default

empty Info is irrelevant, non-existent, or undeterminable

noRelated No related text exists

original The related text is the original from which the current text has been

translated

parallel It is not known whether the related text is the original or the

translation, as may be the case for texts from the EU

⊲ revisionDate

Date when a revision was performed on the text item.

Properties
Value set type descriptive

XML name n/a

Legal values Year, month, and day given according to the pattern yyyy-

mm-dd.

⊲ revisionType

Standardized type of revision applied to the text item.

Properties
Value set type enumerated, open

XML name vs_revisionType.xml

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

created First version of CTB file created. Default

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_revisionType.xml

3.3. Filling in the header 70

⊲ samplingDeclaration

Indicates the amount of original text included in the CTB version.

Properties
Value set type enumerated, closed

XML name vs_samplingDeclaration.xml

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

CTB sample It is unknown whether the text is complete or abridged. Default

CTB version Complete text is included

CTB excerpt Continuous excerpt from the original text

⊲ sponsorName

The name of the initiative (or organization) that intellectually has supported

or initiated the collection of a particular text.

Properties
Value set type enumerated, open

XML name vs_sponsorName.xml

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

DK-CLARIN The DK-CLARIN Consortium, 2008-2010. Default

ordnet.dk The Ordnet.dk Project at dsl.dk, 2006-2013

Korpus 2000 The Korpus 2000 Project at dsl.dk, 2000-2002

DDO Den Danske Ordbog at dsl.dk, 1991-2005

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_samplingDeclaration.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_sponsorName.xml

3.3. Filling in the header 71

⊲ surname

Last name of a text’s author/editor/translator.

Properties
Value set type descriptive

XML name n/a

Legal values Names are always given as a string of pattern surname, fore-

name in <name> elements. If the name cannot be decomposed into fore-

name and surname, the name is stated without a comma. If the text has

been written/translated/edited by a company or organization, the name of

that company/organization is stated. If it for some reason is anonymous, the

<name> element is filled in with the string “anonymous”.

⊲ tdChannel

The primary channel/medium by which a text is delivered or experienced.

Properties
Value set type enumerated, open

XML name vs_tdChannel.xml

Legal values Generally, a text can either be written or spoken. If it is writ-

ten, it can either be distributed electronically, e.g. on the Internet, or on pa-

per, e.g. as a book. The following table is only rudimentary, but shows the

principle of coding: The first digit from the left indicates the general chan-

nel which can be further specified by adding further digits, e.g. “2” means

written, “22” means written using an electronic channel, “221” might mean

email, etc.

Value Description

99999999 Info has not been determined yet. Default

0 Unknown channel

1 Spoken

121 Radio

122 TV

2 Written

21 Paper

22 Electronic

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdChannel.xml

3.3. Filling in the header 72

⊲ tdChannelMode

Describes the channel/medium of a text with respect to speech or writing.

Properties
Value set type enumerated, closed

XML name vs_tdChannelMode.xml

Legal values Values follow the TEI specifications:33

Value Description

w Written. Default

s Spoken

sw Spoken recorded by writing it down

ws Written meant to be spoken

m Mixed

x Unknown or inapplicable. OBS! TEI mixes two cases which usually

are kept apart in CTB

⊲ tdConstitutionType

Describes the internal composition of a text or text sample, for example as

fragmentary or complete.

Properties
Value set type enumerated, closed

XML name vs_tdConstitutionType.xml

Legal values Legal values make up a subset of the TEI specifications:34

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

single A single complete text. Default

frags The text is a continuous fragment, e.g. a chapter from a novel

unknown It is unknown whether the text is complete or fragmentary

33http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-channel.
html

34http://www.tei-c.org/release/doc/tei-p5-doc/html/
ref-constitution.html

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdChannelMode.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-channel.html
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdConstitutionType.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-constitution.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-channel.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-channel.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-constitution.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-constitution.html

3.3. Filling in the header 73

⊲ tdDerivationType

Describes whether the text is translated or original.

Properties
Value set type enumerated, closed

XML name vs_tdDerivationType.xml

Legal values Legal values follow the TEI specifications:35

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

original Original, un-translated version of the text. Default

translation The text is a translation

⊲ tdDomain

The domain the text is associated with.

Properties
Value set type enumerated, closed

XML name vs_tdDomain.xml

Legal values The full set of 66 DDOC domain values is used, as experi-

ments using it for automatic domain classification were promising, see As-

mussen (2005).36 The 66 values can be looked up in the following XML doc-

ument: DDOC domain values.

⊲ tdDomainDiscourse

Describes whether the discourse is domain-specific or not, i.e. if the type

of language used in the text can be categorized as language for general or

specific purposes.

Properties
Value set type enumerated, closed

XML name vs_tdDomainDiscourse.xml

35http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-derivation.
html

36http://korpus.dsl.dk/staff/ja/papers/cl2005_asmussen.latex.pdf

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdDerivationType.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-derivation.html
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdDomain.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdDomain.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdDomainDiscourse.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-derivation.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-derivation.html
http://korpus.dsl.dk/staff/ja/papers/cl2005_asmussen.latex.pdf

3.3. Filling in the header 74

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

general No domain-specific discourse. Language for general purposes used.

Default

specific Domain-specific discourse. Language for specific purposes used

⊲ tdFactualityType

Tells whether a text is imaginative or non-imaginative.

Properties
Value set type enumerated, closed

XML name vs_tdFactualityType.xml

Legal values Values must conform with the TEI specifications37 given in

the following list:38

Value Description

fiction The text is to be regarded as entirely imaginative

fact The text is to be regarded as entirely informative or factual

mixed The text contains a mixture of fact and fiction

inapplicable The fiction/fact distinction is not regarded as helpful or appropriate

to this text. Default

⊲ tdInteractActive

The number of addressors having produced the text.

Properties
Value set type enumerated, closed

XML name vs_tdInteractActive.xml

37http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-factuality.
html

38TEI does not allow to distinguish between “unknown” and “inapplicable”.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdFactualityType.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-factuality.html
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdInteractActive.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-factuality.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-factuality.html

3.3. Filling in the header 75

Legal values Values conform to the suggestions made in the TEI specifica-

tions.39

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

singular A single addressor. Default

plural Many addressors

corporate A corporate addressor

⊲ tdInteractAge

The age group to which addressor and addressee belong.

Properties
Value set type enumerated, closed

XML name vs_tdInteractAge.xml

39http://www.tei-c.org/release/doc/tei-p5-doc/html/
ref-interaction.html

http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-interaction.html
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdInteractAge.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-interaction.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-interaction.html

3.3. Filling in the header 76

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

infant-infant A person aged 0–5 addressing another infant

infant-child A person aged 0–5 addressing a child

infant-teen A person aged 0–5 addressing a teen

infant-adult A person aged 0–5 addressing an adult

infant-senior A person aged 0–5 addressing a senior

child-infant A person aged 6–12 addressing an infant

child-child A person aged 6–12 addressing another child

child-teen A person aged 6–12 addressing a teen

child-adult A person aged 6–12 addressing an adult

child-senior A person aged 6–12 addressing a senior

teen-infant A person aged 13–25 addressing an infant

teen-child A person aged 13–25 addressing a child

teen-teen A person aged 13–25 addressing another teen

teen-adult A person aged 13–25 addressing an adult

teen-senior A person aged 13–25 addressing a senior

adult-infant A person aged 26–60 addressing an infant

adult-child A person aged 26–60 addressing a child

adult-teen A person aged 26–60 addressing a teen

adult-adult A person aged 26–60 addressing another adult. Default

adult-senior A person aged 26–60 addressing senior

senior-infant A person aged 61 and above addressing an infant

senior-child A person aged 61 and above addressing a child

senior-teen A person aged 61 and above addressing a teen

senior-adult A person aged 61 and above addressing an adult

senior-senior A person aged 61 and above addressing another senior

3.3. Filling in the header 77

⊲ tdInteractPassive

The number of addressees to whom a text is directed.

Properties
Value set type enumerated, closed

XML name vs_tdInteractPassive.xml

Legal values Values are taken from the TEI suggestions.40

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

self Text is addressed to the originator e.g. a diary

single Text is addressed to one other person e.g. a personal letter

many Text is addressed to a countable number of others e.g. a

conversation in which all participants are identified

group Text is addressed to an undefined but fixed number of participants

e.g. a lecture

world Text is addressed to an undefined and indeterminately large

number e.g. a published book. Default

⊲ tdInteractRole

Describes the roles of addressor and addressee in terms of technical exper-

tise concerning the topic of the text. This information is usually only inter-

esting if tdDomain has a value other than its default. Otherwise tdInteract-

Role will default to “basic-basic”.

Properties
Value set type enumerated, closed

XML name vs_tdInteractRole.xml

40http://www.tei-c.org/release/doc/tei-p5-doc/html/
ref-interaction.html

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdInteractPassive.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-interaction.html
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdInteractRole.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-interaction.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-interaction.html

3.3. Filling in the header 78

Legal values

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

basic-basic A person with basic knowledge of the topic, i.e. a layperson,

addresses another person with basic knowledge. Default

basic-advanced Somebody with basic knowledge addressing somebody with

advanced knowledge

basic-expert Somebody with basic knowledge addressing somebody with expert

knowledge

advanced-basic Advanced addressing basic

advanced-

advanced

Advanced addressing advanced

advanced-

expert

Advanced addressing expert

expert-basic Expert addressing basic

expert-

advanced

Expert addressing advanced

expert-expert Expert addressing expert

⊲ tdPrepType

Describes the extent to which a text may be regarded as prepared or sponta-

neous.

Properties
Value set type enumerated, closed

XML name vs_tdPrepType.xml

Legal values A subset from the TEI suggestion:41

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

none The text is spontaneous or unprepared

revised Polished or revised before presentation. Default

41http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-preparedness.html

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdPrepType.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-preparedness.html

3.3. Filling in the header 79

⊲ tdPurposeType

Characterizes a single purpose or communicative function of the text,

e.g. whether it is informative, expressive, etc.

Properties
Value set type enumerated, closed

XML name vs_tdPurposeType.xml

Legal values Following the TEI suggestions:42

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

persuade Didactic, advertising, propaganda, etc.

express Self expression, confessional, etc.

inform Convey information, educate, etc.. Default

entertain Amuse, entertain, etc.

⊲ textCreationYear

The year in which the text was authored.

Properties
Value set type descriptive

XML name n/a

Legal values Four-digit date. If the year of text creation is not known,

textCreationYear is set to the same value as publDate.

⊲ textFileName

Name of the source file from which this text is drawn, that is usually the

name of the file the text was delivered in. The organization having collected

the text is responsible for keeping a copy of its source file in an archive if

it wants to enable future corrections or modifications of the CTB version of

the text with regard to certain information only contained in the source file.

42http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-purpose.
html

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_tdPurposeType.xml
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-purpose.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-purpose.html
http://www.tei-c.org/release/doc/tei-p5-doc/html/ref-purpose.html

3.3. Filling in the header 80

Properties
Value set type descriptive

XML name n/a

Legal values Any legal (path and) filename pointing to the source file in

the archive.

⊲ textId

Unique text identifier.

Properties

Value set type system: descriptive

prefixes listed below: enumerated,

open

XML name system: n/a

prefixes: vs_textId.xml

Legal values Values for textId of textIdType “ctb” (cf. below): Specified 10-

digit integer. Identifiers of this type are composed as follows: The first two

digits (from the left) indicate the project framework within which the texts

were collected (which can be some other than DK-CLARIN). Thus, the first

two digits can be viewed as a kind of prefix. The following set of prefixes of

textIdType “ctb” is used:

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_textId.xml

3.3. Filling in the header 81

Value Description

99999999 Info has not been determined yet

0 Info is irrelevant, non-existent, or undeterminable

10 Korpus 2000 material from ’Politiken’, ’Jyllands-Posten’ and

’fyldepennen.dk’

11 Other Korpus 2000 material

120 PAROLE (OBS! PAROLE comprises some material from DDOC)

121 Material from the Corpus of The Danish Dictionary (DDOC)

13 Material collected by DSL’s ordnet.dk project

14 Infomedia material collected by DSL’s ordnet.dk project

20 Infomedia material collected by DK-CLARIN WP2.1, LGP Corpus

2009 Infomedia magazines 2010-11 collected by DK-CLARIN WP2.1, LGP

Corpus

21 Material collected by DK-CLARIN WP2.1, LGP Corpus

22 Material collected by DK-CLARIN WP2.2, LSP Corpus

23 Material collected by DK-CLARIN WP2.3, Renaissance Corpus

24 Material collected by DK-CLARIN WP2.4, ADL/JVJ

25 Material collected by DK-CLARIN WP2.5, Nationalmuseet

26 Material collected by DK-CLARIN WP2.6, Parallel Corpus

90000 DiaKo - optegnelser af dialekter, NFI/ØMO

However, depending on the actual id system (see textIdType below), strings

are acceptable as well.

⊲ textIdType

Identifies the type of textId given.

Properties
Value set type enumerated, open

XML name vs_textIdType.xml

Legal values Default type is “ctb”, but other project- or institution-internal

types can be added.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_textIdType.xml

3.3. Filling in the header 82

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

ctb Text id according to the id system specified for the Clarin Text Bank.

Default

ddo Text id according to the id system specified for the Corpus of The

Danish Dictionary

dsst Text id according to the id system of Dansk Sprog- og Stilhistorisk

Tekstbase (WP2.3)

im Text id according to the id system used by Infomedia (WP2.1)

wiki Wikipedia ID found in Wikipedia export documents at

/mediawiki/page/id/text()

extUri External URI/URL of the text resource

⊲ textTitle

Title of the text from which the sample is taken.

Properties
Value set type descriptive

XML name n/a

Legal values Any string denoting a text title.

⊲ textUri

Resource identifier locating the text source.

Properties
Value set type descriptive

XML name n/a

Legal values Any valid URI pointing at a source instance of the text.

⊲ theirClassification

URL of an official text classification scheme.

3.3. Filling in the header 83

Properties
Value set type enumerated, open

XML name vs_theirClassification.xml

Legal values Any valid URL pointing to a classification scheme. Currently,

the following official classification scheme URLs are defined:

Value Description

nil Info has not been determined yet

empty Info is irrelevant, non-existent, or undeterminable

http://ctb.dsl.dk/class/classCode/CLARIN/demo.xml

Classification containing some demo values

⊲ theirValue

Value given in an official text classification system.

Properties
Value set type n/a

XML name n/a

Legal values Legal values according to official classification.

⊲ titleLevel

Indicates the level of the title within a publication, whether the title is on an-

alytic level, i.e. the text is part of a collection (e.g. a newspaper), or whether

it is on the monographic level, i.e. a stand-alone publication (e.g. a novel).

Properties
Value set type enumerated, closed

XML name vs_titleLevel.xml

Legal values

Value Description

m Monographic title. Default

a Analytic title

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_theirClassification.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_titleLevel.xml

3.3. Filling in the header 84

3.3.3 Additional value sets for text classification

Text classification outside the scope of standard TEI header semantics is achieved

by using a number of <catRef> schemes inside the <textClass> element.

This special information is needed to enable older corpus material like the DDOC

and KORPUS 2000 to be easily integrated in the new structure. The following types

of information are inherited from these two corpora, the general structure for the

<catRef> element being

<catRef
scheme="http://ctb.dsl.dk/class/catRef/textGroup/scheme"
target="#target"/>

where the schemes are in use can be seen under myClassification, see 3.3.2.1 on

page 64.

In CTB, there is no <catRef> scheme for genre information. Instead, the

<factuality> element under <textDesc> is used. DDOC and KORPUS 2000

genre values (as well as other obsolete values in an CTB context) should be

mapped to the CTB header, see Chapter ??.

Chapter 4

Text formatting
What an annotated text should look like

Deliverables concerned

D2 Tokenizer A consistent and easy-to-use token concept needs to be defined.

The token concept has important implications on the design of the tok-

enizer tool and the POS-tagger applied in WP 2.1. Outcome: Tool and report.

D13 TEI transducer The original plan for WP 2.1 was based on the assumption

that the repository of potential corpus texts – the corpus text bank – most

likely would have a non-XML structure (relational db). In order to make

interchange of texts easy and in order to make them fit into the intended

resource repository of DK-CLARIN, the development of a transducer that

could reshape the texts and metadata stored in the corpus text bank to valid

TEI XML seemed necessary. However, during the course of the project, it

became clear that the text bank itself should be implemented as an XML

database so that the texts could be stored in their final TEI XML format.

Therefore, the task of developing a transducer became a task of defining an

appropriate subset of TEI in order to suit the metadata and text format needs

of DK-CLARIN. Outcome: Report.

85

4.1. Basic considerations 86

Outline of this chapter

This chapter gives an overview of the general principles of text formatting and

word level markup for corpus texts. For more specific information, consult the

documentation of applications and procedures for segmenting and annotating

text, see Chapter 5 and Chapter 6.

4.1 Basic considerations . 86

4.1.1 Motivation . 86

4.1.2 Format requirements 86

4.1.3 Consequences . 87

4.2 Formatting text . 87

4.2.1 A source sample to be formatted 87

4.2.2 Bad: Formatting against the requirements 87

4.2.3 Good: Formatting according to the requirements . . . 88

4.2.4 Example . 94

4.1 Basic considerations

4.1.1 Motivation

The main motivation of defining a general text format is to establish a joint basis

for all tools that operate on CTB texts. Thus, tools do not need to be configured for

a multitude of formats which means that they will be easier and less error-prone

to develop and maintain.

4.1.2 Format requirements

1. The format has to be expressed by means of TEI P5.

2. Annotations should not interfere with the basic format of the text proper.

3. The basic format of the text proper should not be biased by interpretations.

4. It must be possible to annotate one single text with various (possibly mutu-

ally exclusive) types of annotations, each type appearing as a group of an-

notations that conceptually belong together.

5. Each annotation in an annotation group must be able to refer to either the

text proper or to another annotation group which means that layers of an-

notations, i.e. annotations on annotations, become feasible.

6. It should be possible to store annotations separate from the text proper.

7. Several versions of the text proper should be avoided.

4.2. Formatting text 87

4.1.3 Consequences

Pre-tokens: The text has to be mechanically segmented into rather primitive to-

kens which we call pre-tokens in the following as they do not reflect any lin-

guistic word conceptualizations.

Reference: It must be possible to unequivocally refer to these tokens.

Transformation: A generalized, multi-purpose format that needs to be trans-

formed in order to be legible for humans which means that specific viewers

and editors must be developed in order to interact with the text.

4.2 Formatting text

4.2.1 A source sample to be formatted

The following snippet shows a paragraph taken from the DDOC1 source files:

<p><s>To kendte russiske historikere Andronik Mirganjan og

Igor Klamkin tror ikke, at Rusland kan udvikles uden en

"jernnæve".</s></p>2

A text version like this one is called the source version of a text. The source version

of a text must comply with the TEI P5 specifications in order to be formatted. If it

does not, it must be converted into TEI P5 prior to further formatting. The excerpt

above conforms to TEI.

4.2.2 Bad: Formatting against the requirements

In the DK-PAROLE Corpus, cf. Keson (1998a), this same paragraph/sentence is

formatted like this:

<p>
<s>

<W lemma="to" msd="AC---U=--">To</W>
<W lemma="kendt" msd="ANP[CN]PU=[DI]U">kendte</W>
<W lemma="russisk" msd="ANP[CN]PU=[DI]U">russiske</W>
<W lemma="historiker" msd="NCCPU==I">historikere</W>
<W lemma="Andronik" msd="NP--U==-">Andronik</W>
<W lemma="Mirganjan" msd="NP--U==-">Mirganjan</W>
<W lemma="og" msd="CC">og</W>
<W lemma="Igor" msd="NP--U==-">Igor</W>
<W lemma="Klamkin" msd="NP--U==-">Klamkin</W>
<W lemma="tro" msd="VADR=----A-">tror</W>
<W lemma="ikke" msd="RGU">ikke</W>

1DDOC = Corpus of The Danish Dictionary, cf. Norling-Christensen and Asmussen (1998).
2Original source: Leon Nikulin: Jeltsins skæbnetime, Det Fri Aktuelt, 1.12.1992, p. 14. Actually,

the original paragraph is longer than the single sentence reproduced here.

4.2. Formatting text 88

<W lemma="," msd="XP">,</W>
<W lemma="at" msd="CS">at</W>
<W lemma="Rusland" msd="NP--U==-">Rusland</W>
<W lemma="kunne" msd="VADR=----A-">kan</W>
<W lemma="udvikle" msd="VAF-=----P-">udvikles</W>
<W lemma="uden" msd="SP">uden</W>
<W lemma="en" msd="PI-CSU--U">en</W>
<W lemma=""" msd="XP">"</W>
<W lemma="jernnæve" msd="NCCSU==I">jernnæve</W>
<W lemma=""" msd="XP">"</W>
<W lemma="." msd="XP">.</W>

</s>
</p>

Even if the format is easy to decode, at least for humans, it has certain shortcom-

ings running counter to the requirements defined in Section 4.1.2 above:

1. The format is not expressed by means of TEI P5 as<W> is not a legal element

in TEI P5 (whereas <w> would be, but msd is not a legal attribute of <w>).

2. Annotations interfere with the format of the text proper (as attributes of the

<W>-element).

3. The text format is affected by interpretation: Punctuation characters are

considered as words that again carry a lemma tag and a morphosyntactic

tag.

4. New annotation layers can hardly be added without further interfering with

the already existing format (e.g. by adding further attributes to the <W> ele-

ment).

5. It is not possible to refer to the basic tokens of the text.

6. Annotations cannot easily be separated from the text proper.

7. Other interpretations of the text expressed by alternative annotations may

require new versions of the text.

4.2.3 Good: Formatting according to the requirements

4.2.3.1 From source version to base format

Two of the consequences emerging from the requirements are that the text has to

be mechanically segmented into basic tokens3 and that it must be possible to un-

equivocally refer to these tokens, cf. Section 4.1.3. Mechanical text segmentation,

or pre-tokenization, is carried out by certain textual surface items, i.e. characters,

only. For segmentation purposes characters fall into three categories:

3The segmentation process is called pre-tokenization, cf. Chapter 5.

4.2. Formatting text 89

⊲ Letters and numbers, i.e. alpha-numeric characters

⊲ Whitespace characters

⊲ Punctuation characters

Continuous sequences of alpha-numeric characters are considered ‘words’ even

if these segments are not necessarily in accordance with a linguistic definition of a

word. Linguistic interpretations are deliberately avoided at this point. ‘Words’ are

put into <w> elements.

Whitespace and punctuation is put into <c> elements – character by charac-

ter – that can be of type “s” (space) or “p” (punctuation). The non-obligatory sub-

type attribute may specify some other characteristics of the character in question,

e.g. the length of a whitespace. Specifications of the possible inventory of the sub-

type attribute are not given before it turns out that this attribute is really needed.

Standard space characters (ASCII 32) are not explicitly denoted in the <c> ele-

ments (i.e. they remain empty) whereas other whitespace characters such as tabs

(coded as) can be given in the element.

<w> and <c> elements are the smallest segments (i.e. basic tokens) of a text.

Each of them carries a unique xml:id that allows referencing to it from elsewhere.4

The source example given in Section 4.2.1 would look like this after segmentation:

<p>
<s>

<w xml:id="x002">To</w>
<c xml:id="x003" type="s"/>
<w xml:id="x004">kendte</w>
<c xml:id="x005" type="s"/>
<w xml:id="x006">russiske</w>
<c xml:id="x007" type="s"/>
<w xml:id="x008">historikere</w>
<c xml:id="x009" type="s"/>
<w xml:id="x010">Andronik</w>
<c xml:id="x011" type="s"/>
<w xml:id="x012">Mirganjan</w>
<c xml:id="x013" type="s"/>
<w xml:id="x014">og</w>
<c xml:id="x015" type="s"/>
<w xml:id="x016">Igor</w>
<c xml:id="x017" type="s"/>
<w xml:id="x018">Klamkin</w>
<c xml:id="x019" type="s"/>
<w xml:id="x020">tror</w>
<c xml:id="x021" type="s"/>
<w xml:id="x022">ikke</w>
<c xml:id="x023" type="p">,</c>
<c xml:id="x024" type="s"/>

4Assigning IDs requires some sort of control that every ID is unique.

4.2. Formatting text 90

<w xml:id="x025">at</w>
<c xml:id="x026" type="s"/>
<w xml:id="x027">Rusland</w>
<c xml:id="x028" type="s"/>
<w xml:id="x029">kan</w>
<c xml:id="x030" type="s"/>
<w xml:id="x031">udvikles</w>
<c xml:id="x032" type="s"/>
<w xml:id="x033">uden</w>
<c xml:id="x034" type="s"/>
<w xml:id="x035">en</w>
<c xml:id="x036" type="s"/>
<c xml:id="x037" type="p">"</c>
<w xml:id="x038">jernnæve</w>
<c xml:id="x039" type="p">"</c>
<c xml:id="x040" type="p">.</c>

</s>
</p>

This formatted version of the source text is called the text’s base format. The base

format is the standard input format for all tools like tokenizers, sentence splitters,

lemmatizers, and taggers of all kinds, see the motivation for a fixed text format in

Section 4.1.1.

As can be seen, markup above <w> and <c> level that is already present in the

source version text, may be kept as long as the source version complies with the

TEI specifications. In this case, the <p> and <s> tags were kept; <p> tags may

carry an xml:lang attribute that indicates the language of the paragraph by using

a value from the languageId value set described in 3.3.2. Even though tags other

than <c>, <w>, <s>, and <p> may be used as long as they are TEI-compliant,5

this type of markup should be avoided and added as span groups instead, see the

following section.

4.2.3.2 Annotations

Annotations are given separately from the base format version of the text by a

number of elements enclosed in <spanGrp> elements. The
elements contain the annotations themselves that are either attached to one sin-

gle basic token or a number of continuous basic tokens. Attachment is achieved

by referencing the xml:id units from the obligatory from attribute of the
element and – in case continuous basic tokens are referenced and not only a single

one – the facultative to attribute. Every <spanGrp> contains one type of annota-

tions only. The ana attribute of the <spanGrp> element refers to the application

or method that has produced the annotations, listed in the <appInfo> element

of the header. Some annotation examples follow.

5Among such elements is <lb> (line break) whereas the <hl> element, which was introduced

by some other WP 2 projects, is not allowed in the body of a text. See also Section 4.2.3.4 on further

examples.

4.2. Formatting text 91

Sentences In the base format version given in Section 4.2.3.1 <p> and <s> tags

from the source version were kept as independent tags as they occurred above the

level of the basic tokens and met the TEI specifications. The<p> tags are an oblig-

atory part of the structure: Raw text as well as <w> and <c> elements must be en-

capsulated by <p> elements or equivalent elements, e.g. <ab>. However, the<s>
tags could alternatively be expressed as <spanGrp> annotations. The following

example shows how sentences can be tagged in this alternative way making <s>
tags in the the base format version unnecessary.

<spanGrp ana="#sentences">
s

</spanGrp>

Lemmas The following example shows what the PAROLE lemma annotation ex-

pressed by the lemma attributes as shown in Section 4.2.2 looks like when ex-

pressed by the <spanGrp> annotation.

<spanGrp ana="#paroleLemma">
to
kendt
russisk
historiker
Andronik
Mirganjan
og
Igor
Klamkin
tro
ikke
,
at
Rusland
kunne
udvikle
uden
en
"
jernnæve
"
.

</spanGrp>

The linguistic interpretation expressed by the PAROLE lemma annotation is ex-

actly the same as in the example shown in Section 4.2.2, including that punctua-

tion characters are treated as lemmas, but this interpretation no longer imposes a

certain formatting on the base format of the text. Base format and interpretation

are kept apart.

4.2. Formatting text 92

POS and inflection In the same manner, the morphosyntactic annotation of the

PAROLE corpus can be expressed by a <spanGrp>:

<spanGrp ana="#paroleMsd">
AC---U=--
ANP[CN]PU=[DI]U
ANP[CN]PU=[DI]U
NCCPU==I
NP--U==-
NP--U==-
CC
NP--U==-
NP--U==-
VADR=----A-
RGU
XP
CS
NP--U==-
VADR=----A-
VAF-=----P-
SP
PI-CSU--U
XP
NCCSU==I
XP
XP

</spanGrp>

Again, punctuation characters are treated as independent units carrying their own

morphosyntactic annotation (“XP”).

Alternative POS markup If the morphosyntactic PAROLE annotation is consid-

ered inadequate for certain purposes, a new annotation group with another tag

set and another treatment of punctuation easily can be added, for example:

<spanGrp ana="#parolePOS">
NUM
ADJ
ADJ
S
S/span>
S
KON
S
S
V
ADV
SUB
S
V
V
PRP

4.2. Formatting text 93

ART
S

</spanGrp>

Names, manually annotated In the same manner e.g. names could be marked

up, for example as result of a manual procedure:

<spanGrp ana="#paroleNames">
person
person
place

</spanGrp>

4.2.3.3 Putting base format and annotation layers together

The base format version from Section 4.2.3.1 and all annotation groups are struc-

turally combined as shown in the following sketch. The text in base format is

enclosed by <body> tags whereas the <spanGrp> elements are siblings of the

<body> element, following it in arbitrary order:

<text>
<body>6

- Text in base format (with obligatory paragraph markup)
</body>

- <spanGrp> with sentence markup7

- <spanGrp> with lemma annotations
- <spanGrp> with POS and inflectional annotations
- <spanGrp> with alternative POS markup
- <spanGrp> with name annotations

</text>

4.2.3.4 Additional information in the base version

According to TEI 5, only a few elements may occur as siblings to the <w> and <c>
elements. The use of such elements to give additional textual or graphical format-

ting information should be generally avoided. This type of information should be

placed in <spanGrp> elements if it cannot be entirely eliminated.8

However, as putting additional information into <spanGrp> elements may

complicate the process of converting text from original versions to the base ver-

sion, some exceptions are the following tags which occur in some forum texts

gathered in WP 2.1:

6TEI expects the text to be subdivided into front matter, text body, and back matter. For corpus

texts, a subdivision of this kind is unnecessary. However, TEI demands at least the <body> subdi-

vision. Therefore, all CTB <text> elements contain one single <body> element encapsulating the

text body.
7If the <s> markup is not already contained in the base format version of the text.
8As concerns linguistic corpus texts, layout information is dispensable in most cases and there-

fore can be removed.

4.2. Formatting text 94

<quote> may occur as sibling of <w> and <c> tags and may embed them as well,

i.e. have them as children. This tag is used for surrounding text material that

is quoted in forum posts; in these cases it always carries the type attribute

‘forum’.

<add> may occur as sibling of <w> and <c> tags but cannot contain them. This

element gives additional information on extra-textual resources like images

(mandatory type attribute is ‘img’, mandatory source attribute is the URI of

the resource) or pointers (type is ‘url’, source as before), or video (type ‘video’,

source as before).

4.2.3.5 What happens to the source version of a text?

When converting a TEI P5 source version of a text into base format, all information

is kept either as additional markup in the base format version like the <p> and

<s> markup in the example shown in Section 4.2.3.1 or as independent span

groups as shown in the sentences example in Section 4.2.3.2. As all necessary

textual and extra-textual information contained in the source version can be ex-

pressed in base format in conjunction with a number of span groups, the source

version proper becomes obsolete, and thus is not kept as a member of the CTB

files. However, it should be stored independently in some location that can be

referenced from the CTB header through one of the <idno> elements within

<biblStruct>, see Section 3.2.1.5. The same applies to other source versions

like URLs from which the TEI P5 base versions may have been derived. In the case

of the WP 2.1 corpus project, all original texts are stored in the text file repository

in the /Data volume on the server ja-korpus.dsl.lan – the same server

where the eXist-db is installed, see Section 2.2.2.3.

4.2.3.6 Format requirements revisited

So far, the format requirements 1 – 4 and 7 have been highlighted by the example

given above in Section 4.1.2. Regarding requirement 5, it has been shown how an

annotation group refers to the text proper, namely through from and optional to

attributes referencing the xml:id attributes of the basic textual units. What has not

been shown yet is how to layer annotation groups by letting them reference other

annotation groups. This will be part of the following examples section. Require-

ment 6, the possibility of storing annotations separate from the text proper, may

be illustrated in a separate document.

4.2.4 Example

4.2.4.1 Tokenization and layers of annotations

The base format of a text may to some extent resemble a tokenized version of

it. However, ‘real’ tokenization normally requires a certain amount of language-

4.2. Formatting text 95

specific linguistic knowledge on how to identify words, but the segmentation pro-

cedure applied to the source version of a text in order to transform it into base

format does not possess this kind of knowledge; in fact, the segmentation proce-

dure is entirely ignorant on delicate linguistic considerations. This means, that in

some cases it may be desirable to apply a more intelligent tokenization procedure

in addition to the mere segmentation of the source text as the following example

shows.

Source version To keep this example as simple as possible, markup above the

level of the basic textual units is kept to a minimum, i.e. the obligatory <p> tags:

<p>De staar over for et PROBLEM i dag.</p>

Base format The source version is converted into base format:

<p>
<w xml:id="y01">De</w>
<c xml:id="y02" type="s"/>
<w xml:id="y03">staar</w>
<c xml:id="y04" type="s"/>
<w xml:id="y05">over</w>
<c xml:id="y06" type="s"/>
<w xml:id="y07">for</w>
<c xml:id="y08" type="s"/>
<w xml:id="y09">et</w>
<c xml:id="y10" type="s"/>
<w xml:id="y11">PROBLEM</w>
<c xml:id="y12" type="s"/>
<w xml:id="y13">i</w>
<c xml:id="y14" type="s"/>
<w xml:id="y15">dag</w>
<c xml:id="y16" type="p">.</c>

</p>

Tokenization and regularization The linguistically ignorant segmentation

mechanism that converts the source version into base format, treats the two word

pairs over for and i dag as four separate words even if each pair reasonably may

be considered as one single word, once in a while also with substandard spelling

overfor and idag. In order to express this linguistically enlightened view on which

textual units are to be treated as tokens, a token annotation layer is introduced

as a span group. The tokenization algorithm applied furthermore regularizes the

spelling of words according to some predefined norm of some kind, in the present

case De is regularized as de, staar as står, and PROBLEM as problem. The
elements of this span group all carry an additional xml:id attribute giving each

 a unique ID which can be referenced from elsewhere, i.e. from other

annotation groups.

4.2. Formatting text 96

<spanGrp ana="#tokenRegular">
de
står
over for
et
problem
i dag

</spanGrp>

Lemmatization The following lemma annotations no longer address the basic

textual units but instead the elements of the annotation group above:

<spanGrp ana="#lemma">
de
stå
over for
en
problem
i dag

</spanGrp>

POS annotation Finally, the following POS annotations address the same token

annotation layer as does the lemma annotation group:

<spanGrp ana="#lemma">
PRON
V
PRP
ART
S
ADV

</spanGrp>

Part III

Collecting

97

Chapter 5

Processing text
Bringing texts into good shape

Deliverables concerned

[...]

Outline of this chapter

[...]

5.1 Implementation . 99

5.1.1 Web-services . 99

5.1.2 Web-services and Java 101

5.2 Header constructor: make-header 102

5.2.1 Description . 102

5.2.2 Implementation . 103

5.2.3 Use . 103

5.3 Pre-tokenizer: pretokenize 113

5.3.1 Description . 113

5.3.2 Implementation . 115

5.3.3 Use . 116

5.4 Text id registry: register-text 118

5.4.1 Description . 118

5.4.2 Implementation . 118

5.4.3 Use . 119

5.5 id dispatcher: make-id . 121

5.5.1 Description . 121

5.5.2 Implementation . 121

5.5.3 Use . 122

98

5.1. Implementation 99

5.6 Word and paragraph counter: count-units 123

5.1 Implementation

The text-conversion services are implemented in part as standalone Java pro-

grams, web-services based on eXist-db/XQuery,1 as well as a combination of both

approaches. The following description only gives an account of DSL’s conversion

software as DSN’s never has been documented.

5.1.1 Web-services

Two equally popular web-service architectures are REST (Representational State

Transfer) and SOAP (Simple Object Access Protocol). They each have their merits

and drawbacks.

A major advantage of SOAP is that it can satisfy a wide range of non-functional

requirements, in particular Quality of Service (QoS) requirements like secure, re-

liable and protocol-independent messaging. For SOAP to work there must be an

HTTP body in which to place the SOAP envelope (containing the payload of the

message and its metadata). This means that SOAP web-services always rely on the

POST method even for so-called idempotent operations (i.e. operations which do

not change anything on the server, e.g. simple requests for information). A draw-

back of SOAP is, besides relying on the POST transfer method only, that it involves

the use of a quite verbose XML format (literally hundreds of different specifica-

tions) which may introduce overhead and needless complexity.

While REST does not allow for much QoS, its key merit is exactly its simplicity

and transparency. According to the REST web-service design pattern, everything

is considered a resource, and all resources are organized like a standard file system

(which, in fact, resembles the structure of the early WWW). The operations which

can be performed on resources are limited to the standard HTTP methods, i.e.

POST, PUT, GET and DELETE.

Since the eXist open source XML database system is already being used in DK-

CLARIN as a text-bank platform, see , and since eXist features an integrated REST-

style HTTP server interface, REST was selected as the architectural style for the

CTB web-services. Another reason for avoiding SOAP is that QoS aspects are not

an issue, so using SOAP and WSDL would only introduce needless complexity.

Having decided on a native XML database as the platform for the text-bank in

DK-CLARIN WP2.1 and WP2.2, it seemed only logical to stay with the XML family

and select the XQuery technology as the implementation language for the web-

services. It only made the choice even more obvious that XQuery scripts which are

1Services based on eXist-db will be gradually replaced by Java/Glassfish-based services in future

development.

5.1. Implementation 100

stored in an eXist database collection can, in fact, be executed by simply pointing

your web browser to the REST URL.2

As described in the online developer’s guide for eXist,3 eXist databases can be

deployed in various ways, one of them being a stand-alone server process accessi-

ble through a REST-style API through HTTP. This is the simplest and quickest way

to access the database because eXist features a built-in web server which conve-

niently treats all HTTP request paths as paths to a database collection.

The default listen address for the eXistServlet is

⊲ http://localhost:8080/exist/rest

but when running as a stand-alone process – as is the case for DK-CLARIN – the

server listens to port 8088, e.g.:

⊲ http://localhost:8088/ctb/xq

XPath expressions or XQueries can either be added directly to the request string as

values of the request parameter, _query, e.g.

⊲ http://localhost:8080/exist/rest/db/shakespeare?
_query=//SPEECH[SPEAKER=%22JULIET%22]&_start=3&_howmany=5

or they can be stored on the server in a database collection and called in a similar

fashion using a simple HTTP GET request, e.g.:

⊲ http://localhost:8080/exist/rest/db/test/guess.xql

In both cases the server returns raw XML to the browser (unless otherwise speci-

fied in the query).

In the current implementation of the web-services the public endpoint

⊲ http://ctbws.dsl.dk/[web-service]

is mapped to an otherwise ‘hidden’ eXist database server via DNS.

All requests are performed via the POST method and the MIME type of the data

must be application/xml. The XML content that is posted to the web-service, i.e.

the request body, has the following basic structure for all web-services described

below:

<request xmlns="http://ctbws.dsl.dk/ns/request">
[request contents]

</request>

Please note, that the namespace http://ctbws.dsl.dk/ns/request
is obligatory and always must be given as value of the xmlns attribute of the

<request> element.

2 See http://exist.sourceforge.net/devguide_xquery.html#storedxq for

more details.
3See http://exist.sourceforge.net/deployment.html.

http://exist.sourceforge.net/devguide_xquery.html#storedxq
http://exist.sourceforge.net/deployment.html

5.1. Implementation 101

5.1.1.1 Demo Application

An application containing a collection of interactive demos4 describing the struc-

ture of the input for each web-service and giving examples of the output returned

by each web-service is available at:

⊲ http://korpus.dsl.dk/clarin/demo/webservice/

Depending on your Flash Player version and your browser you may be able to

view and download the Flash/Flex source code of the demo application by right-

clicking on the demo application and choosing the menu option View Source.

Please contact Jørg Asmussen at ja@dsl.dk before modifying and re-using

the code!

5.1.2 Web-services and Java

There are many ways of generating and dispatching an HTTP POST request pro-

grammatically (as opposed to using an HTML form with action and method at-

tributes), and there are multiple programming languages which can be used to

implement a simple client which takes an XML structure as input, builds and dis-

patches the POST request and prints the response received from the server.

The following code illustrates how one could implement a simple Java client

which generates a full TEI WP2 header using the DK-CLARIN WP2.1 make-header

web-service. It can easily be modified to be used with one of the other services

described in this:

*** TokenizeText.java ***
package mystuff;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.URL;
import java.net.URLConnection;
public class TokenizeText {
public static void main(String[] args) {

if (args.length < 2) {
System.err.println("Usage: <service URL> <file with XML request>");

} else {
StringBuilder sb = new StringBuilder();
String s = "";
String input = "";
URL url;
URLConnection urlConn;
try {
//Read the XML document and store it in a String object
BufferedReader fin =

new BufferedReader(new FileReader(args[1])); //Req.file
while ((s = fin.readLine()) != null) {

sb.append(s);
}

4The demo application needs the Flash Player 10 plugin in your browser to be functional.

http://korpus.dsl.dk/clarin/demo/webservice/
mailto:ja@dsl.dk

5.2. Header constructor: make-header 102

input = sb.toString();
fin.close();
// URL of pretokenizer WS
url = new URL(args[0]); //URL of the service
// URL connection channel.
urlConn = url.openConnection();
// Let the run-time system (RTS) know that we want input.
urlConn.setDoInput(true);
// Let the RTS know that we want to do output.
urlConn.setDoOutput(true);
// Specify the content type.
urlConn.setRequestProperty("Content-Type",

"application/xml");
// Send POST output. No need to use
// setRequestMethod("POST") since only POST requests have
// HTTP bodies with a particular content-type
OutputStreamWriter oswr =

new OutputStreamWriter(urlConn.getOutputStream(),
"UTF8");

oswr.write(input);
oswr.flush();
oswr.close();
// Get response data.
BufferedReader br2 =

new BufferedReader(new InputStreamReader(
urlConn.getInputStream(), "UTF8"));

String str = "";
while ((str = br2.readLine()) != null) {

// Output could also be printed to a file
System.out.println(str);

}
br2.close();

}
catch (Exception e) {
System.err.println(e.getMessage());

}
}

}
}

5.2 Header constructor: make-header

5.2.1 Description

The header constructor web-service takes as input a simplified header only carry-

ing the most relevant information about a text. The input (i.e. the request body)

must comply with a specific XML structure, cf. the request body shown in Sec-

tion 5.2.3 and the demo application described in Section 5.1.1.1.5 On the basis of

this input, a complete TEI-P5-WP2 header (full header) is returned to the client.

In case of missing information in the simplified input header, the web-service au-

tomatically fills in default information in the full header. Even an empty request

returns a full and formally correct header with all values set to defaults.

5The make-header request template can also be downloaded directly from http://ctbws.
dsl.dk/request-templates/make-header.xml.

http://ctbws.dsl.dk/request-templates/make-header.xml
http://ctbws.dsl.dk/request-templates/make-header.xml

5.2. Header constructor: make-header 103

5.2.2 Implementation

The header constructor is implemented as an XQuery script make-header
that just works as an interface between the client and the function module

lib/make-header.xqm.

Source code

The XQuery source code of the header constructor service and its function module

can be downloaded from the following URLs respectively:

⊲ http://ctbws.dsl.dk/make-header.zip

⊲ http://ctbws.dsl.dk/lib/make-header.xqm.zip

Please contact Jørg Asmussen at ja@dsl.dkbefore modifying the code!

5.2.3 Use

The endpoint of the header constructor web-service is the following URI:

⊲ http://ctbws.dsl.dk/make-header

Data upload is achieved by the POST method and the MIME type of the data must

be application/xml. The XML content that is posted to the web-service, the request

body, must comply with the following structure – the element contents given are

for illustration purposes only. They are taken from an authentic DDOC sample.

Request body6

The following request contains a so-called simplified header to be converted into

a full TEI-P5-WP2 header by the make-header web-service. The simplified header

is considered an interface between user applications and the full header: User

apps just need to transform information into the simple and flexible structure of

the simplified header, the make-header web-service ensures that any simplified

header is converted into a – at any time – correct full TEI-P5-WP2 header. Hence,

validating against a dedicated TEI-P5-WP2 header schema should not be neces-

sary. However, testing the validity of values from fixed inventories is still neces-

sary. If the structure of the full header is changed, the make-header web-service

will be changed accordingly; all other conversion tools that just convert to the sim-

plified header structure will not be directly affected by such structural changes. So

using the simplified header as an interface between conversion tools and the full

TEI-P5-WP2 header makes it easier to maintain conversion tools and conversions

themselves less error-prone.

6A make-header request demo can also be downloaded directly from http://ctbws.
dsl.dk/request-templates/make-header.xml.

http://ctbws.dsl.dk/make-header.zip
http://ctbws.dsl.dk/lib/make-header.xqm.zip
mailto:ja@dsl.dk
http://ctbws.dsl.dk/request-templates/make-header.xml
http://ctbws.dsl.dk/request-templates/make-header.xml

5.2. Header constructor: make-header 104

The structure of the simplified header is deliberately flat with just one level be-

neath the outermost request node. However, some elements work as containers

for any number of other elements, cf. further descriptions below. The order of

the elements in a simplified header is arbitrary. The element names are (almost)

identical to the corresponding variable and value-set names used in. A simplified

header does not need to be complete: Elements may be left out and the corre-

sponding elements or attributes in the full header will be filled in with default val-

ues. If a value-set exists for a certain type of information, the default value from

this value-set is used if it is declared. If it is not declared, default is nil (or 99999999

in the case of dates and numbers). If a value-set does not exist, default is always

nil (or 99999999).

The following example shows how header data of a DDOC text can be ex-

pressed by means of the simplified header. It shows all elements possible in the

the simplified header, even such which in this particular case could be left out as

they just contain default values which would be added automatically by the ser-

vice. Numbers in square brackets refer to comments further below in this descrip-

tion.

<request xmlns="http://ctbws.dsl.dk/ns/request">
<textTitle>Skal vi have 35-timers arbejdsuge... nu?</textTitle> (1)

<titleLevel>a</titleLevel> (2)

<editionTitle>Bytinget</editionTitle> (3)

<textIds> (4)

<textId type="ctb">1200001003</textId> (5)

<textId type="ddo">HRfX</textId> (6)

</textIds> (7)

<samplingDeclaration>CTB excerpt</samplingDeclaration> (8)

<sponsorName>DDO</sponsorName> (9)

<captureOrgName>dsl.dk</captureOrgName> (10)

<captureMethod>keyed-proof</captureMethod> (11)

<captureYear>1992</captureYear> (12)

<numberOfWords>463</numberOfWords> (13)

<numberOfParagraphs>2</numberOfParagraphs> (14)

<distributorOrgName>dsl.dk</distributorOrgName> (15)

<availStatus>restricted</availStatus> (16)

<availDescAcademic>partial</availDescAcademic> (17)

<availDescNonCommercial>partial</availDescNonCommercial> (18)

<availDescAll>partial</availDescAll> (19)

<anonymDescAcademic>0</anonymDescAcademic> (20)

<anonymDescNonCommercial>0</anonymDescNonCommercial> (20)

<anonymDescAll>0</anonymDescAll> (20)

<notes> (21)

<note type="dsl.dk" [lang="en"]> (22)

DDOC text sample converted to TEI-P5-WP2 format
</note>
<note type="dsl.dk" [lang="xx"]>Grp:Bytinget1KK; Num:1</note> (23)

<note type="dsl.dk" [lang="xx"]> (24)

SpbId: LPG;
FøS: Århus;
Bop: ?;
Reg: Øs;
Udd: cand.scient.pol.;
Erh: folketingsmedlem;
SpV: i;
Rol: de;

5.2. Header constructor: make-header 105

</note>
<note type="dsl.dk" [lang="xx"]> (24)

SpbId: LIG;
FøS: Horsens;
Bop: ?;
Reg: Ve;
Udd: tekn. forb.eksamen;
Erh: folketingsmedlem;
SpV: i;
Rol: de;

</note>
</notes>
<authors> (25)

<author id="LPG"> (26)

<name>Gammelgaard, Lars P.</name> (27)

<role>empty</role> (28)

<age>adult</age> (29)

<sex>1</sex> (30)

<dob>1945</dob> (31)

<dobCert>high</dobCert> (32)

</author>
<author id="LIG"> (33)

<name>Gyldenkilde, Lilli</name>
<role>empty</role>
<age>adult</age>
<sex>2</sex>
<dob>1936</dob>
<dobCert>high</dobCert>

</author>
</authors>
<translators> (34)

<translator id="nil"> (35)

<name>nil</name>
</translator>

</translators>
<editors> (36)

<editor id="nil"> (37)

<name>nil</name>
</editor>

</editors>
<publId>10013</publId> (38)

<publHouse>DR</publHouse> (39)

<publDate>1983</publDate> (40)

<publDateCert>low</publDateCert> (41)

<edIssue>empty</edIssue> (42)

<edSect>empty</edSect> (43)

<edVolume>empty</edVolume> (44)

<edChapter>empty</edChapter> (45)

<edPages>empty</edPages> (46)

<textUri>empty</textUri> (47)

<textFileName>ja-korpus.dsl.lan:/DOT/textrepository/
collections/ddoc/speech/BYTINGET.SGM</textFileName> (48)

<relatedItems> (49)

<relatedItem id="nil"> (50)

<type>nil</type> (51)

<title>nil</title> (52)

</relatedItem>
</relatedItems>
<projectIdentifier>DDOC-spoken</projectIdentifier> (53)

<applications> (54)

<application id="nil">
<appXmlId>nil</appXmlId>

5.2. Header constructor: make-header 106

<appType>nil</appType>
<appTask>nil</appTask>
<appVersionNumber>99999999</appVersionNumber>
<appScope>nil</appScope>
<appDescription>nil</appDescription>

</application>
</applications>
<textCreationYear>1983</textCreationYear> (55)

<textCreationYearCert>low</textCreationYearCert> (56)

<languageId>da</languageId> (57)

<languageCharacterisation>empty</languageCharacterisation> (58)

<tdChannelMode>s</tdChannelMode> (59)

<tdChannel>122</tdChannel> (60)

<tdConstitutionType>unknown</tdConstitutionType> (61)

<tdDerivationType>original</tdDerivationType> (62)

<tdOriginalLanguageId>da</tdOriginalLanguageId> (63)

<tdDomainDiscourse>general</tdDomainDiscourse> (64)

<tdDomain>331</tdDomain> (65)

<tdFactualityType>fact</tdFactualityType> (66)

<tdInteractActive>plural</tdInteractActive> (67)

<tdInteractPassive>world</tdInteractPassive> (68)

<tdInteractRole>basic-basic</tdInteractRole> (69)

<tdInteractAge>adult-adult</tdInteractAge> (70)

<tdPrepType>none</tdPrepType> (71)

<tdPurposeType>persuade</tdPurposeType> (72)

<catRefs> (73)

<catRef
type="http://ctb.dsl.dk/class/catRef/DDOC/RePr.xml">r</catRef>

<catRef
type="http://ctb.dsl.dk/class/catRef/DDOC/Medi.xml">tv</catRef>

<catRef
type="http://ctb.dsl.dk/class/catRef/DDOC/Genr.xml">kul</catRef>

<catRef
type="http://ctb.dsl.dk/class/catRef/DDOC/GnTy.xml">kul</catRef>

</catRefs>
<classCodes> (74)

<classCode
type="http://ctb.dsl.dk/class/classCode/CLARIN/demo.xml">
demoValue

</classCode>
</classCodes>
<revisions> (75)

<revision>
<revisionDate>2010-01-01</revisionDate>
<revisionOrgName>dsl.dk</revisionOrgName>
<revisionType>created</revisionType>

</revision>
</revisions>

</request>

1. <textTitle> contains the title of the source text. If the <textTitle>

element is missing, the default value nil is inserted into the corresponding

elements in the full TEI-P5-WP2 header. The lang attribute indicates the

language of he title, default is nil.

2. As this text is part of a collection, that is a series of broadcasts, its title level

– given by the<titleLevel> element – has to be marked as analytic, indi-

cated by the value ‘a’. Default is monographic, ‘m’, which means that the text

is a stand-alone text, not a member of a collection. If a text is a stand-alone

5.2. Header constructor: make-header 107

text, the <titleLevel> element can be left out. The make-header web-

service then automatically inserts the default value into the corresponding

slot in the full TEI-P5-WP2 header.

3. <editionTitle> contains the title of the collection of which the text is

a member. If a text is not member of a collection, the <editionTitle>

element can be left out. Default is nil. If the title of the collection is irrelevant

(e.g. because the text is monographic), <editionTitle> should be set to

empty. The lang attribute indicates the language of he title, default is nil.

4. <textIds> is a container element which means that it may contain any

number of related other elements, in this case various ids for the same text.

5. The <textId> of type ‘ctb’ is an invented example although the first two

digits (the prefix) indicate that this is a text from the DDOC. CTB text ids

should be derived from the make-id web-service devoted solely to dispatch-

ing valid ids, cf. Section 5.5 on page 121.

6. The <textId> of type ‘ddo’ is the original text id from the DDOC which we

want to keep in the new TEI-P5-WP2 header.

7. </textIds>marks the end of the <textIds> container.

8. The text is an excerpt, that is, not a complete text, so <samplingDeclar-

ation> is set to ‘CTB excerpt’. Default is ‘CTB sample’ which means

that it is not known whether the text is complete or an excerpt. If the

<samplingDeclaration> element is left out, the make-header web-

service assumes the default value.

9. Sponsor was the DDO project so <sponsorName> is set to ‘DDO’. Sponsor

means the intellectually supporting initiative behind the text capture. De-

fault: ‘DK-CLARIN’.

10. <orgName> contains the name of the organization responsible for creating

the electronic version of the text. Default: nil.

11. <captureMethod> describes how the text was captured. In this case the

text was manually keyed, i.e. transcribed from audio-tapes, and proof-read.

Default: ‘file’.

12. <captureYear> contains the year the text was captured. Default is the

current year (which must be set in the corresponding value set file).

13. <numberOfWords> holds the approximate number of words (tokens)

in the text sample. A word count can be made by the web-service

count-units, see Section 5.6 on page 123. Default: 99999999.

5.2. Header constructor: make-header 108

14. <numberOfParagraphs>holds the approximate number of paragraphs

in the text sample. A paragraph count can be made by the web-service

count-units, see Section 5.6 on page 123. Default: 99999999.

15. <distributorOrgName> indicates the organization responsible for the

distribution of this text (if it may be distributed). Default: nil.

16. <availStatus> indicates the availability of the text. In this case, the text

is not available to everybody, thus <availStatus> is set to ‘restricted’.

Default is also ‘restricted’ so the <availStatus> element is actually un-

necessary in this case and could be left out. The resulting full header would

be the same anyway.

17. <availDescAcademic> describes the availability status for users from

academic institutions affiliated with DK-CLARIN; ‘partial’ means that they

may search and view text contents limited to what is specified in Danish

citation law. Default is also ‘partial’, so this element could be left out without

affecting the resulting full header.

18. <availDescNonCommercial>describes the availability status for non-

commercial user; ‘partial’ means that they may search and view text con-

tents limited to what is specified in Danish citation law. Default is ‘par-

tial’ too, so this element could be left out without affecting the resulting full

header.

19. <availDescAll> describes the availability status for all other users,

again it is ‘partial’. Default is also ‘partial’ again, so this element could be

left out without altering the resulting full header.

20. No anonymisations required for any user group (elements <anonymDesc-

Academic>,<anonymDescNonCommercial>,and<anonymDescAll>).

Default value is in all cases ‘0’, so the anonymDesc elements could be left

out.

21. The <notes> element is a container for any number of <note> elements

each of which carries a type attribute telling which organization is responsi-

ble for this note and a lang attribute that denotes the language of the note.

Valid notes are listed in . Notes may give information that cannot be ex-

pressed elsewhere in the TEI-P5-WP2 header. Default for both type and

<note> content is nil.

22. The first <note> in this example gives some information on the corpus

from which this text has been taken. The lang attribute of this note is “en”

meaning “English”. The lang attributes in this and other elements are not

mandatory and can be left out. The make-header service described in (5.2)

ignores them.

5.2. Header constructor: make-header 109

23. Another <note> gives some admin info that is contained in the original

DDOC header but cannot be expressed by means of the TEI-P5-WP2 header.

The lang attribute of this note is the non ISO-value “xx” which means “for-

malized”, i.e. the language of the note is formally constructed to express cer-

tain properties of the text that cannot be expressed elsewhere in the header.

24. Further <note> elements give additional author/speaker information

which is contained in the original DDOC header but cannot be expressed in

the TEI-P5-WP2 header. Again, the lang attribute is set to “xx”.

25. The <authors> element encapsulates all authors (or speakers) who have

produced this text. It could be left out; however, as a text must have an

author, the make-header web-service would create a dummy author nil

(meaning the author has not yet been identified).

26. Each author/speaker carries a unique id (attribute id of the <author>

element) which should be derived from the make-id web-service devoted

solely to dispatching valid ids, cf. 5.5 on page 121. In this case, for illus-

tration purposes, the id is the original one used in the DDOC. Default is

nil.

27. The <name> of the author given as ‘lastName, firstName’ if possible. De-

fault: nil.

28. The <role> element tells who has contributed most to the text. The role of

the major author is ‘major’, all other authors are classified as ‘minor’. How-

ever, in this text, both authors have contributed equally much which means

that the role is undeterminable which is indicated by the empty value. De-

fault: ‘major’.

29. The <age> element indicates the age group to which the author belonged

when he produced the text. Default is ‘adult’ so in this example the <age>

element could be left out as well.

30. The <sex> element gives the sex of the author/speaker: ‘1’ means male.

Default: ‘0’ meaning unknown.

31. Author’s date of birth<dob> given in the pattern yyyy[-mm[-dd]]. Default is

99999999.

32. Certainty of the date of birth is expressed in the <dobCert> element. De-

fault is ‘high’ so in this case the <dobCert> element is actually unneces-

sary.

33. Another author (that is speaker in this example). OBS! Each <author> el-

ement comprises the following subelements: <name>, <role>, <age>,

<sex>, <dob>, and <dobCert>. They can be left out which means that

they are automatically filled in with default values.

5.2. Header constructor: make-header 110

34. The <translators> element encapsulates any number of possible

translators of the text. The element can be left out if it is not relevant. The

make-header web-service then inserts a placeholder dummy translator

named empty in the full header. In contrary to the dummy author whose

name value is nil, the dummy translator carries the value empty, meaning

that this information is irrelevant, that there is no translator.

35. A dummy <translator>always has id attribute of nil and a<name> ele-

ment of empty. In the example, for illustration purposes, the<translator>

element explicitly creates a dummy translator in the full header. However,

the whole <translators> structure could be left out in this case, the

result would remain the same. Each <translator> element has the

same child elements as has an <author> element. So additional info

concerning the translator(s) could be given as well.

36. The <editors> block comprises information about editors, its children

being <editor> elements. Apart from its different element name, it

is structurally fully identical to the <authors> and <translators>

blocks. If no editors were involved in producing/publishing the text, this

block can be left out. In that case, the make-header web-service inserts a

dummy editor in the full header.

37. In the case of the present text, which is a (transcribed) radio broadcast in

a series of broadcasts, there should be an editor involved, i.e. the person

responsible for this series. However, the DDOC header structure is not de-

signed for that type of information so it is missing in the DDOC. Hence, ed-

itor is set to nil in the editor element. Default is empty.

38. <publId> contains the id of the publisher pointing to a data collection

with further info on the publisher or distributor of the text source. Publisher

ids are defined in value set documents. Default: 99999999.

39. <publHouse> contains the name of the publisher/distributor. Default:

nil.

40. <publDate> contains the date of publication. Default: 99999999.

41. <publDayCert> indicates the certainty of publication date. Default:

‘high’.

42. Imprint info <edIssue> indicates the issue of this publication. Default:

nil.

43. Imprint info <edSect> gives the section. Default: nil.

44. Imprint info <edVolume> contains volume information. Default: nil.

45. Imprint info <edChapter>: the chapter. Default: nil.

5.2. Header constructor: make-header 111

46. Imprint info <edPages>: pages info. Default: nil.

47. <textUri> contains URI of online version of the source text. Default: nil.

48. <textFileName> contains the file name of the input version of the text.

Default: nil.

49. Parallel versions of this text or texts otherwise related are listed within the

<relatedItems> block. Defaults: nil. In this case there are no related

texts, so the block containing pointers to related texts could be left out and

the web-service would just insert a dummy with default values. For illustra-

tion purposes, an explicit default dummy is defined.

50. Attribute id of the<relatedItem>element refers to the CTB text id of the

related text.

51. <type> of textual relationship, e.g. ‘original’, ‘parallel’. Default: nil.

52. <title> gives the title of the related text. The lang attribute indicates the

language of he title, default is nil.

53. <projectIdentifier> contains a unique identifier of the text collec-

tion project in which this electronic text was captured and prepared. De-

fault: nil.

54. The <applications> container is used for listing applications that have

processed the text. The default-segmented base version is the result of a

pre-tokenizer having operated on it. However, this is never stated in the

application info block. Thus, in most cases, the applications container can

be left out and the make-header service just creates an empty placeholder

in the output. In order to show all relevant elements of an application, here,

an empty application is given explicitly. For a detailed description of these

elements see .

55. <textCreationYear> contains the year of text creation. Default:

99999999.

56. <textCreationYearCert>gives info on how sure it is that the text was

created in that year. Default: ‘high’.

57. <languageId> indicates the predominant language of the text. Default:

nil.

58. <languageCharacterisation>may give some further description of

the language used. Default: nil.

59. <tdChannelMode> tells whether the text is spoken or written. Default:

‘w’.

5.2. Header constructor: make-header 112

60. <tdChannel> indicates the medium through which the text was experi-

enced: ‘122’ means television. Default: 99999999.

61. <tdConstitutionType> holds a description of the internal composi-

tion of a text. In this case, the text is a fragment, but is unknown whether

it is continuous or not, so <tdConstitutionType> is set to ‘unknown’.

Default: ‘single’.

62. <tdDerivationType> gives info on whether the text is translated or

original. Default: ‘original’.

63. <tdOriginalLanguage> tells what was the original language of the text.

This info is particularly relevant in case the text is a translation, otherwise

the value is the same as in <languageId>. Default: nil.

64. <tdDomainDiscourse> describes whether the text is LSP or LGP. De-

fault: ‘general’.

65. <tdDomain> gives the DDOC domain code. ‘331’ means business (‘er-

hvervsliv’). Default: 99999999.

66. <tdFactualityType> gives info on whether the text is imaginative or

non-imaginative. Default: ‘inapplicable’.

67. <tdInteractActive> indicates the number of addressors having pro-

duced the text. Default: ‘singular’.

68. <tdInteractPassive> indicates the number of addressees to whom a

text is directed. Default: ‘world’.

69. <tdInteractRole> indicates the roles of addressor and addressee in

terms of technical expertise concerning the topic of the text. Default:

‘basic-basic’.

70. <tdInteractAge> indicates the age groups to which addressor and ad-

dressee belong. Default: ‘adult-adult’.

71. <tdPrepType> indicates the extent to which a text may be regarded as

prepared or spontaneous. Default: ‘revised’.

72. <tdPurposeType> indicates the purpose or communicative function of

the text, e.g. whether it is informative, expressive, etc. Default: ‘inform’.

73. <catRefs> is a container with additional textual classifications in cases

where the classification system follows a project-internal scheme. As the

sample is from the DDOC, the additional classifications are DDOC-specific

and the corresponding valuesets are given as vaules of the <catRef> at-

tribute type. If no <catRefs> are given, the web-service generates one

dummy <catRef> element with nil values.

5.3. Pre-tokenizer: pretokenize 113

74. <classCodes> is a container with classifications based on official text

classification schemes. As no official classification scheme is used in the

DDOC, the <classCodes> container gives just one single (superfluous)

<classCode> demo. If no <classCodes> are given, the web-service

generates one dummy <classCode> element with ‘nil’ values.

75. The <revisions> block contains revision information on this text. If no

revisions are given, the web-service generates a dummy <revision> el-

ement with a <revisonDate> of 99999999, a <revisionOrgName> of

nil, and a <revisionType>of ‘created’.

The example given above shows all elements of the simplified header. However, as

the make-header service employs defaults in all cases where corresponding infor-

mation in the simplified header is missing, many elements of the example above

would be left out in a real setting. The resulting response would be exactly the

same. The reader is encouraged to experiment with this in the interactive demo

application at http://korpus.dsl.dk/clarin/demo/webservice/.

Response

The response from the make-header service is a full TEI-CTB header formatted

according to the specifications given in . What this header looks like can be seen by

running the above example in the demo application at http://korpus.dsl.
dk/clarin/demo/webservice/. The above example is the default example

of the demo app.

Client development

The Java client example shown in Section 5.1.2 on page 101 can easily be adopted

to be used with this web-service too.

5.3 Pre-tokenizer: pretokenize

5.3.1 Description

The pre-tokenizer web-service takes as input a raw text (preferably with <p> an-

notations), a prefix letter (for prefixing token ids) and finally a text id which has to

be unique within the DK-CLARIN project. The input must comply with a specific

XML structure (cf. the demo in Section 5.1.1.1). On the basis of this input, a preto-

kenized version of the text (no header) is returned to the client. The pretokenized

format complies with TEI-P5 and will be referred to as TEI-P5-WP2 format in this

document.

http://korpus.dsl.dk/clarin/demo/webservice/
http://korpus.dsl.dk/clarin/demo/webservice/
http://korpus.dsl.dk/clarin/demo/webservice/

5.3. Pre-tokenizer: pretokenize 114

For some tasks the TEI-P5-WP2 format will constitute an adequate degree of

tokenization, but for other tasks it may not. For example, common multiword

expressions like i går (‘yesterday’) are not recognized and annotated as a single

token. For this reason we refer to the tokenizer as a “pretokenizer” and encourage

users to produce separate annotation layers (span groups) on the basis of TEI-P5-

WP2 in case they need more sophisticated or customized tokenization, see .

A key issue when implementing a tokenizer is which characters should be con-

sidered punctuation (i.e. non-word characters). Punctuation characters should

be characterized by having no semantic impact on the words in the text. In other

words, if a punctuation character is removed from the text, this should in no way

change the meaning of the words in the text (denotational, connotational, or oth-

erwise). If, for example, currency symbols, degree symbols and so on were to be

deleted, it would cause a loss of meaning. For this reason such characters are not

considered punctuation.

5.3.1.1 List of punctuation characters

On the basis of discussions in the WP2 project group, which agreed upon using the

punctuation characters listed in Wikipedia, cf. http://da.wikipedia.org/
wiki/Tegns\T1\aetning and http://en.wikipedia.org/wiki/
Punctuation, the list of punctuation characters used in the pre-tokenizer is

limited to the following:

Table 5.1: Punctuation characters

Character Description Code Variants

’ apostrophe 0027

(bracket, round,

opening

0028

) bracket, round, closing 0029

[bracket, square,

opening

005B

] bracket, square, closing 005D

{ bracket, curly, opening 007B

} bracket, curly, closing 007D

: colon 003A

, comma 002C

- dash/hyphen 002D 2013 en dash: –

2014 em dash: —

Table continues on next page. . .

http://da.wikipedia.org/wiki/TegnsT1ae tning
http://da.wikipedia.org/wiki/TegnsT1ae tning
http://en.wikipedia.org/wiki/Punctuation
http://en.wikipedia.org/wiki/Punctuation

5.3. Pre-tokenizer: pretokenize 115

Character

(continued)

Description

(continued)

Code

(continued)

Variants

(continued)

/ slash 002F 005C backslash: \

_ underscore 006F 2026 horizontal ellipsis:

. . .

! exclamation mark 0021

. full stop 002E

“ upright double

quotation mark

0022 00AB left guillemet: «

00BB right guillemet: »

2018 left single: ‘

2019 right single: ’

2039 left single guillemet:

‹

203A right single

guillemet: ›

201C left double: “

201D right double: ”

? question mark 003F

; semicolon 003B

¿ various punctuation 00BF

Whitespace characters are captured by a regular expression which conflates

whitespace sequences into a single whitespace character (\s+). The pretokenizer

does not record the number or types of whitespace in the input.

5.3.2 Implementation

The pre-tokenizer is implemented as an XQuery script which in addition to built-

in functions like tokenize and normalize-spacemakes use of the following

five self-defined functions:

1. tok:tokenize-doc(text,id-prefix)

2. local:isolate-punctuation(string)

3. local:punct(string,id)

4. local:space(id)

5.3. Pre-tokenizer: pretokenize 116

5. local:token(string,id)

Four of the self-defined functions are local, but the tokenize-doc function

resides in the tok namespace and is the main function which calls the other

four functions to carry out subtasks of the tokenization process. All five functions

are grouped into an XQuery module pretokenize.xqm, and this module is

included from a single XQuery script pretokenize which is invoked by re-

quests addressed to the pretokenizer web-service at http://ctbws.dsl.dk/
pretokenize.

The tokenize-doc function takes two arguments, namely the <p> anno-

tated text and an id prefix. This function iterates through the <p> elements of the

input document, calls the local:isolate-punctuation function on each

<p> element (which inserts ^ characters around all punctuation characters and

whitespace sequences as defined in Section 5.3.1.1) and then tokenizes the text

string in the <p> element using the ^ character as delimiter.

For each token,tokenize-doc calls eitherlocal:punct,local:space,

or local:tokendepending on the contents of the token. These three functions

in turn insert <c> or <w> elements in the output with appropriate id numbers as

attributes. The main XQuery script finally wraps everything in a <text> element

and returns it to the client.

Source code

The XQuery source code of the tokenizer service and the tokenizer function mod-

ule can be downloaded from the following URLs respectively:

⊲ http://ctbws.dsl.dk/pretokenize.zip

⊲ http://ctbws.dsl.dk/lib/pretokenize.xqm.zip

Please contact Jørg Asmussen at ja@dsl.dkbefore modifying the code!

5.3.3 Use

The endpoint of the pretokenizer web-service is the following URI:

⊲ http://ctbws.dsl.dk/pretokenize

Data upload is via the POST method and the MIME type of the data must be ap-

plication/xml. The XML content which is posted to the web-service, the request

body, must comply with the following structure – the element contents given are

for illustration purposes only.

http://ctbws.dsl.dk/pretokenize
http://ctbws.dsl.dk/pretokenize
http://ctbws.dsl.dk/pretokenize.zip
http://ctbws.dsl.dk/lib/pretokenize.xqm.zip
mailto:ja@dsl.dk

5.3. Pre-tokenizer: pretokenize 117

Request body7

<request xmlns="http://ctbws.dsl.dk/ns/request">
<idPrefix>A</idPrefix>
<textId>2100000000</textId>
<text>
<p>A paragraph.</p>
<p>Another paragraph.</p>

</text>
</request>

Response

The reponse from the service is the following TEI fragment:

<text xmlns:math="http://www.w3.org/1998/Math/MathML"
xmlns="http://www.tei-c.org/ns/1.0"
xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:svg="http://www.w3.org/2000/svg"> >

<body>
<p>
<w xml:id="A-2100000000-2-1">A</w>
<c xml:id="A-2100000000-2-2" type="s"/>
<w xml:id="A-2100000000-2-3">paragraph</w>
<c xml:id="A-2100000000-2-4" type="p">.</c>

</p>
<p>
<w xml:id="A-2100000000-4-1">Another</w>
<c xml:id="A-2100000000-4-2" type="s"/>
<w xml:id="A-2100000000-4-3">paragraph</w>
<c xml:id="A-2100000000-4-4" type="p">.</c>

</p>
</body>

</text>

Client development

The Java client example shown in Section 5.1.2 on page 101 can easily be adopted

to be used with this web-service too.

7A pretokenize request demo can also be downloaded directly from http://ctbws.
dsl.dk/request-templates/pretokenize.xml.

http://ctbws.dsl.dk/request-templates/pretokenize.xml
http://ctbws.dsl.dk/request-templates/pretokenize.xml

5.4. Text id registry: register-text 118

5.4 Text id registry: register-text

5.4.1 Description

The text id registry web-service takes as input an XML request body with 3 argu-

ments (expressed by XML elements) of which the original id of the text is the most

important. It checks whether this text id is already contained in the text id registry

or not. As part of the response, a boolean is returned that is true if the text id is

already a member of the registry or false otherwise. If the text id does not yet exist

in the registry, it is inserted.

For each request made to the text id registry web-service, the result of the re-

quest is logged, i.e. whether the text may be inserted in the CTB or not.

5.4.2 Implementation

The text id registry web-service is implemented as an XQuery scriptregister-text
which is invoked by requests addressed to the corresponding web-service at

⊲ http://ctbws.dsl.dk/registry/register-text.

The main functionality of this service is found in the function module/lib/regi-
stry/register-text.xqm.

The registry itself is an XML document located underhttp://ctb.dsl.dk/
registry/text/. The name of the document is identical with the name of the

text group, the exentsion of the document is .xml. An example is

⊲ http://ctb.dsl.dk/registry/text/demo.xml.

The corresponding logfile is located at

⊲ http://ctb.dsl.dk/registry/text/demo.log.xml.

The following example illustrates the structure of the registry document (with just

one text id registered):

<textRegistry group="infomedia">
<txt id="e18062c7"

org="dsl.dk"
ins="2009-11-05T18:09:35.578+01:00"/>

</textRegistry>

For each text id inserted there is one <txt> element. The attribute id contains

the text id, org indicates the organisation responsible for handling this text, and

ins tells when this text id was registered.

The following example shows the structure of a log document:

http://ctbws.dsl.dk/registry/register-text
http://ctb.dsl.dk/registry/text/demo.xml
http://ctb.dsl.dk/registry/text/demo.log.xml

5.4. Text id registry: register-text 119

<textRequestLog group="infomedia">
<txt id="e18062c7"

insert="true"
org="dsl.dk"
reqTime="2009-12-30T18:09:35.601+01:00"/>

<txt id="e18062c7"
insert="false"
org="dsn.dk"
reqTime="2009-12-31T08:01:11.711+01:00"/>

</textRequestLog>

Each request made to the text id registry is logged in one <txt> element whose

attributes give the result and further info of that request. Thus id contains the text

id this request was made on, insert tells whether the text with the corresponding id

may be inserted in the CTB or not: if insert is ‘true´ it may be inserted, if it is ‘false’,

the text most likely already has been inserted in the CTB and should therefore be

rejected this time. Attribute org gives the organisation having made the logged

request and reqTime gives the date and time of that request.

Source code

The XQuery source code of the registry service and the registry function module

can be downloaded from the following URLs respectively:

⊲ http://ctbws.dsl.dk/registry/register-text.zip

⊲ http://ctbws.dsl.dk/lib/registry/register-text.xqm.
zip

Please contact Jørg Asmussen at ja@dsl.dkbefore making any modifications to

the code!

5.4.3 Use

The endpoint of the textregistry web-service is the following URI:

⊲ http://ctbws.dsl.dk/registry/register-text

Data upload is via POST and the MIME type of the data must be application/xml.

The XML content which is posted to the web-service, the request body, must com-

ply with the following structure – the element contents given are for illustration

purposes only. Do not send any requests to the ‘infomedia’ text group unless OBS!

you have been explicitly authorized to do so by Jørg Asmussen, otherwise the

Infomedia registry may be corrupted.

http://ctbws.dsl.dk/registry/register-text.zip
http://ctbws.dsl.dk/lib/registry/register-text.xqm.zip
http://ctbws.dsl.dk/lib/registry/register-text.xqm.zip
mailto:ja@dsl.dk

5.4. Text id registry: register-text 120

Request body8

<request xmlns="http://ctbws.dsl.dk/ns/request">
<textGroup>infomedia</textGroup>
<textId>e18062c7</textId>
<organisation>dsl.dk</organisation>

</request>

The element <textGroup> indicates the name of the group of texts; various

groups – and thus various corresponding registry documents – may be defined.

However, at the moment, there is only one ‘real’ registry document, that is the one

used for Infomedia texts, the text group ‘infomedia’. In addition, there is a group

‘demo’ for demo purposes.

Please do not use the Infomedia group as its registry document may be cor- OBS!

rupted by improper use! Use the ‘demo’ text group instead as it has been created

for testing purposes!

The element <textId> contains the original text id used by the text group in

question. In the case of Infomedia texts, it is the original text id used by Infomedia.

In the case of the ‘demo’ group, for testing the functionality of this service, any

string may be given as input.

Finally, <organisation> gives the name of the organisation being respon-

sible for the text in question.

New registry documents and logfiles must be created manually directly in the

eXist-db.

Response

The following XML content illustrates the structure of the reponse from the ser-

vice:

<response>
<textId>e18062c7</textId>
<exists>false</exists>
<inserted>true</inserted>

</response>

Element <textId> is the text id from the request, <exists> indicates whether

it already is in the registry, and <inserted> tells whether it has been inserted

into the registry; this is always the case if it is not already registered.

8A register-text request demo can be downloaded directly from http://ctbws.dsl.
dk/request-templates/registry/register-text.xml.

http://ctbws.dsl.dk/request-templates/registry/register-text.xml
http://ctbws.dsl.dk/request-templates/registry/register-text.xml

5.5. id dispatcher: make-id 121

Client development

The Java client example shown in Section 5.1.2 on page 101 can easily be adopted

to be used with this web-service too.

5.5 id dispatcher: make-id

5.5.1 Description

The id dispatcher web-service takes as input an XML request body with 2 argu-

ments (expressed by XML elements). It returns CTB-valid ids for texts and persons

(authors, editors, and translators). It should be used when adding TEI-WP2 head-

ers to texts to be included in the CTB, and it ensures that ids are correct according

to the definitions.

5.5.2 Implementation

The id dispatcher web-service is implemented as an XQuery script make-id
which is invoked by requests addressed to

⊲ http://ctbws.dsl.dk/registry/make-id.

The main functionality of this service is found in the function module /lib/re-
gistry/make-id.xqm.

ids are dispatched according to the values recorded in an id registry. The reg-

istry itself is a couple of XML documents located underhttp://ctb.dsl.dk/re-
gistry/id/. There is one registry document for each of the 2 id classes ‘text’

and ‘person’. In addition, there is a ‘demo’ class for demo purposes only that

should be used with the online demo interface and the like. Please do not use OBS!

other types than ‘demo’ if you just want to test the service! Otherwise the id

counters would be unnecessarily altered. An example of an id registry document

is

⊲ http://ctb.dsl.dk/registry/id/demo.xml.

The following example illustrates the structure of the registry document that con-

trols dispatching text ids – the example here is just an excerpt from the full docu-

ment which is located at http://ctb.dsl.dk/registry/id/text.xml:

<idRegistry>
<idClass prefix="10" mnemo="k2000">
<first>0</first>
<next>103506</next>
<last>99999999</last>

</idClass>
<idClass prefix="21" mnemo="dkclarin21">

http://ctbws.dsl.dk/registry/make-id
http://ctb.dsl.dk/registry/id/demo.xml

5.5. id dispatcher: make-id 122

<first>0</first>
<next>117988</next>
<last>99999999</last>

</idClass>
<idClass prefix="22" mnemo="dkclarin22">
<first>0</first>
<next>0</next>
<last>99999999</last>

</idClass>
</idRegistry>

There is one id class for each project indicated by a 2-digit prefix attribute

and somewhat clarified by the ‘mnemonic’ value of the mnemo attribute. The

<first> element contains the first legal id value in a particular <idClass>,

<next> the next one to use, and finally, <last> gives the highest id to be used

within that class.9

Source code

The XQuery source code of the id dispatcher service and the registry function

module can be downloaded from the following URLs respectively:

⊲ http://ctbws.dsl.dk/register/make-id.zip

⊲ http://ctbws.dsl.dk/lib/register/make-id.xqm.zip

Please contact Jørg Asmussen at ja@dsl.dkbefore making any modifications to

the code!

5.5.3 Use

The endpoint of the id dispatcher web-service is the following URI:

⊲ http://ctbws.dsl.dk/register/make-id

Data upload is via POST and the MIME type of the data must be application/xml.

The XML content which is posted to the web-service, the request body, must com-

ply with the following structure – the element contents given are for illustration

purposes only. Do not send any requests to the ‘text’ or ‘person’ id classes unless OBS!

you have been explicitly authorized to do so by Jørg Asmussen.

9The current implementation of this web-service does not check whether the highest legal value

is exceeded.

http://ctbws.dsl.dk/register/make-id.zip
http://ctbws.dsl.dk/lib/register/make-id.xqm.zip
mailto:ja@dsl.dk

5.6. Word and paragraph counter: count-units 123

Request body10

<request xmlns="http://ctbws.dsl.dk/ns/request">
<idClass>text</idClass>
<idPrefix>21</idPrefix>

</request>

The element <idClass> indicates the id class, either ‘text’, ‘person’, or ‘demo’.

Please do not use the ‘text’ or ‘person’ class unless you have been explicitly al- OBS!

lowed to do so! Use the ‘demo’ class instead as it has been created for testing pur-

poses!

The element <idPrefix> contains the prefix to use for the texts in question.

A complete list of prefixes can be found at

⊲ http://korpus.dsl.dk/clarin/corpus-doc/text-header/
vs_textId.xml.

Response

The following XML content illustrates the structure of the response from the ser-

vice:

<response>
<idClass>text</idClass>
<id>2100000719</id>

</response>

Element <idClass> gives the id class (taken from the request), <id> gives the

dispatched id. Ids of classes ‘text’ and ‘demo’ consist of the prefix followed by 8

digits whereas ‘person’ ids have 10 digits following the prefix. In addition, ‘demo’

ids have the prefix Demo-.

Client development

The Java client example shown in Section 5.1.2 on page 101 can easily be adopted

to be used with this web-service too.

5.6 Word and paragraph counter: count-units

Work in progress.

10A make-id request demo can also be downloaded directly from http://ctbws.dsl.dk/
request-templates/make-id.xml.

http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_textId.xml
http://korpus.dsl.dk/clarin/corpus-doc/text-header/vs_textId.xml
http://ctbws.dsl.dk/request-templates/make-id.xml
http://ctbws.dsl.dk/request-templates/make-id.xml

Part IV

Markup

124

Chapter 6

Survey of POS taggers
Approaches to making words tell who they are

Deliverables concerned

D10 Lemmatizer It is considered indispensable that corpus texts need to indicate

the lemma form of each inflected word form in the corpus to let the user of

the corpus perform more flexible queries. Therefore, it is necessary to ei-

ther develop or configure a lemmatizer (that may be based on a full-form

lexicon or a morphological analyzer). In the context of WP 2.1, a lemma-

tizer designed as an integral part of a POS tagger is the preferable solution.

Outcome: Tool with documentation.

D11 POS tagger In order to tag tokens in corpus texts with part-of-speech infor-

mation, it is necessary to either develop or configure a POS tagger (either

based on a full-form lexicon or a morphological analyzer) and a suitable tag

set. Outcome: Tool with documentation.

125

6.1. Requirements 126

Outline of this chapter

This chapter describes WP 2.1’s requirements to part-of-speech (= POS) tagging

and provides a survey of existing POS approaches and their suitability. The survey

is based on the requirements defined in Section 6.1. The chapter finishes with

some conclusions on which approach to choose for tagging WP 2.1 corpus texts.

6.1 Requirements . 126

6.2 Survey . 127

6.2.1 Universal taggers . 127

6.2.2 Taggers for Danish . 132

6.2.3 Conclusions . 133

6.3 Case study . 134

6.3.1 Building a token-based HMM 134

6.3.2 Building a lexicon-based HMM 135

6.1 Requirements

Within a narrow DK-CLARIN context, the process of POS tagging could be re-

duced to just letting some kind of black box perform what is needed in order to get

the text material of this corpus work-package marked-up with appropriate mor-

phosyntactic info. Seen in this is light, the major requirement would be precision,

therefore the only relevant answer allowed to ask on this topic may seem: How

close to 100 % do we get? However, precision is not a quality in itself but the result

of other properties.

As a black box is not configurable, and as requirements definitely will change

over time and beyond the narrow scope of the DK-CLARIN project, “close to

100 %” may not be that close once some of the prerequisites of the tagging sce-

nario have been modified. Therefore, an open configurable solution seems to be a

more forward-looking approach. Open means that both the tagger software itself

and its linguistic ‘knowledge’ must be open source and thus configurable, and

available for free for everybody. Open source and free availability is considered

a major requirement and crucial in order to achieve a permanent level of high

precision.

A secondary requirement is that the tagger should not just apply a model of the

language in question, i.e. Danish, and assign appropriate POS tags to words, but

also perform lemmatization, i.e. assign the base forms of all (inflected) words. As

a consequence of that, the tagger should apply an open-source full form lexicon

(that is available already, but definitely needs to be enhanced).1

1See http://korpus2000.dk/e-resurser/boejningsformer_download.php?
lang=uk.

http://korpus2000.dk/e-resurser/boejningsformer_download.php?lang=uk
http://korpus2000.dk/e-resurser/boejningsformer_download.php?lang=uk

6.2. Survey 127

Another requirement is that the tagger should be written in a widely-used,

platform-independent programming language that also is used as major coding

language in at least one of the DK-CLARIN corpus work-packages and thus pro-

vides a comprehensive API. As WP 2.1 uses Java and probably has the largest bulk

of text to tag, Java is considered the programming language of choice for the tag-

ger.

The tagger must be adaptive to various needs. For small occasional tagging

purposes, a web-based solution seems optimal. In order to make a web-based tag-

ger fit into specific text processing lines, it should come as a web service as well.

Finally, the software should be executable on a stand-alone PC or workstation in

order to process vast amounts of text quickly and without the need to access re-

mote services.

Moreover, the tagger should be well-documented and continuously main-

tained (and enhanced) by a community rather than one single developer. It

should be user-friendly to set up and get running.

To sum up, the following requirements given in prioritized order are consid-

ered crucial:

Availability: Free open-source tagger code and linguistic resources

Features: Capable of performing both POS tagging and lemmatization

Code: Tagger coded in Java or at least providing a Java API

Architecture: Flexible architecture adaptive to various usage scenarios

Usability: Well-documented and continuously maintained, user-friendly

6.2 Survey

In this section, various taggers are presented in arbitrary order and described ac-

cording to the requirements given in the section above. The section is subdi-

vided in a listing of universal taggers, i.e. taggers that in principle are language-

independent, and taggers, specifically designed for or adopted to Danish.

6.2.1 Universal taggers

A comprehensive list of taggers can be found on Stanford University’s NLP site2.

Evert and Giesbrecht (2009) give an evaluation of the performance on German of

some of these taggers, i.e. TreeTagger, TnT, SVMTagger, Stanford tagger, and the

Apache UIMA Tagger.

1. IMS’s TreeTagger – a language-independent POS tagger3

2http://nlp.stanford.edu/links/statnlp.html
3http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

http://nlp.stanford.edu/links/statnlp.html#Taggers
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://nlp.stanford.edu/links/statnlp.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

6.2. Survey 128

Availability: Free for academic use, easy download, comes with free lan-

guage models for approximately 10 languages, but not Danish. Not

open source. Assessment: poor.

Features: HMM4 tagger using decision trees for smoothing. Performs

lemmatization if a full form lexicon is supplied. Assessment: good.

Code: Comes as precompiled binaries, a Java API is available, but no java

source files. Assessment: fair.

Architecture: The Java wrapper makes it possible to adopt the tagger to var-

ious usage-scenarios. Assessment: good.

Usability: The tagger was developed as part of the project Textcorpora und

Erschließungswerkzeuge (1993-1996) at the IMS (same project as Cor-

pus Workbench, CWB/CQP) and has not changed substantially since

then. Documentation is sparse (included as a read me in the download

package) but probably enough to both use the software for training

and tagging purposes. The tagger is maintained by one single person

(Helmut Schmid). However, it seems to have a fairly large user commu-

nity that partly overlaps with those who use CQP as well. Assessment:

fair.

2. TnT5

Availability: Free of charge for non-commercial research purposes. Down-

load requires signed license agreement. Comes with language models

for German and English. Not open source. Assessment: poor.

Features: HMM tagger with standard smoothing. Does not perform

lemmatization. Assessment: fair.

Code: Comes as precompiled binaries, no wrappers available. Assessment:

poor.

Architecture: May work in an I/O pipeline setting. Assessment: poor.

Usability: The tagger was developed by Thorsten Brants at Saarland Uni-

versity 1993-1999 and does not seem to have changed substantially

since then. Documentation6 is OK. The tagger does not seem to be

actively maintained any longer. Assessment: poor.

3. SVMTool7

4Hidden Markov Models.
5http://www.coli.uni-saarland.de/~thorsten/tnt/
6http://www.coli.uni-saarland.de/~thorsten/publications/

Brants-TR-TnT.pdf
7http://www.lsi.upc.es/~nlp/SVMTool/

http://www.coli.uni-saarland.de/~thorsten/tnt/
http://www.coli.uni-saarland.de/~thorsten/publications/Brants-TR-TnT.pdf
http://www.lsi.upc.es/~nlp/SVMTool/
http://www.coli.uni-saarland.de/~thorsten/tnt/
http://www.coli.uni-saarland.de/~thorsten/publications/Brants-TR-TnT.pdf
http://www.coli.uni-saarland.de/~thorsten/publications/Brants-TR-TnT.pdf
http://www.lsi.upc.es/~nlp/SVMTool/

6.2. Survey 129

Availability: Open source with models for Catalan, English, and Spanish.

However, it must be trained by using the non open-source SVMlight

software which can be used for free for academic purposes. Assess-

ment: fair.

Features: Based on Support Vector Machines. Configurable in many ways.

No lemmatization. Assessment: fair.

Code: C++ and Perl versions, Perl API. Assessment: fair.

Architecture: Can work in an I/O pipeline setting. Assessment: poor.

Usability: The SVMTool has been developed at the TALP Research Center

NLP group at Universitat Politècnica de Catalunya. Latest version

seems to be from 2006. Documentation8 is OK. Assessment: fair.

4. Stanford Log-linear Part-Of-Speech Tagger9

Availability: Open source. Models for English, Arabic, Chinese, and Ger-

man. Assessment: good.

Features: Based on the Maximum Entropy framework. It can be trained on

any language on a POS-annotated training text for the language. No

lemmatization. Assessment: fair.

Code: Java implementation. Assessment: good.

Architecture: Open source, thus easy integration in other environments.

Assessment: good.

Usability: Comes with good documentation and seems well-maintained

and up-to-date. Literature pointers on up-to-date website. Java NLP

user lists are available for further information. However, applying

the tagger to other languages than those with pre-compiled models,

seems rather challenging. Assessment: fair.

5. Apache UIMA Tagger10

Availability: Open source. Comes with models for English and German. As-

sessment: good.

Features: HMM tagger as part of the Apache Unstructured Information

Management Architecture (UIMA) framework. No lemmatization.

Assessment: fair.

Code: Java. Assessment: good.

Architecture: Flexible. Web service integration as component of the frame-

work. Assessment: good.

8http://www.lsi.upc.edu/~nlp/SVMTool/SVMTool.v1.3.pdf
9http://nlp.stanford.edu/software/tagger.shtml

10http://uima.apache.org/sandbox.html

http://svmlight.joachims.org/
http://www.lsi.upc.edu/~nlp/SVMTool/SVMTool.v1.3.pdf
http://nlp.stanford.edu/software/tagger.shtml
http://uima.apache.org/sandbox.html
http://www.lsi.upc.edu/~nlp/SVMTool/SVMTool.v1.3.pdf
http://nlp.stanford.edu/software/tagger.shtml
http://uima.apache.org/sandbox.html

6.2. Survey 130

Usability: Website and documentation seems OK even if latest website up-

dates are from 2009. However, the UIMA framework has reached a de-

gree of complexity (obscure code interdependencies) that makes the

use of the tagger component rather cumbersome. Assessment: poor.

6. Chris Biemann’s unsupos – unsupervised POS tagging11

Availability: Open source. Models for a number of languages available in-

cluding Danish. It is not clear what type of material the Danish model

is based on. Assessment: good.

Features: Unsupervised POS tagging. Does not require an annotated train-

ing corpus. Instead, word categories are determined by analyzing a

large sample of monolingual, sentence-separated plain text. The tag

set can probably not be determined by the user/linguist. No lemmati-

zation. Assessment: poor.

Code: Java implementation. Assessment: good.

Architecture: Probably easy to integrate in various environments. Assess-

ment: good.

Usability: Documentation is sparse, homepage and maintenance do not

seem to be quite up-to-date. Assessment: poor.

11http://wortschatz.uni-leipzig.de/~cbiemann/software/unsupos.html

http://wortschatz.uni-leipzig.de/~cbiemann/software/unsupos.html
http://wortschatz.uni-leipzig.de/~cbiemann/software/unsupos.html

6.2. Survey 131

7. Eric Brill’s simple rule-based part of speech tagger12

Availability: Source code accessible at Plymouth Tech.13 Assessment:

good.

Features: Based on rules derived from a training corpus. No lemmatization.

However, absence of lemmatization may be resolved by modifying the

code and implementing a lexicon (if the tagger is open source). Assess-

ment: fair.

Code: Originally implemented in C. Also implemented in Python as part of

NLTK14. An interesting implementation of Brill’s ideas combined with

an HMM approach is the Erlangen-Tagger15 though documentation of

this approach seems poor and it is not open source. The same ap-

proach however is applied by Sujit Pal16 whose Java code is available

as open source (see also the next tagger reviewed here). Assessment:

good.

Architecture: Depending on the implementation, the tagger can be easily

adopted to various conditions. Assessment: good.

Usability: Especially the Python and the Java implementations come with

good documentation. Assessment: good.

8. Sujit Pal’s HMM-based tagger17

Availability: Source code available from Sujit Pal’s blog. Comes with a

model for English derived from the Brown Corpus. Assessment: good.

Features: HMM tagger based on Konchady (2006). No lemmatization.

However, as the code is well-structured and not too complex, other

features may be added. Sujit Pal is a software developer, not a linguist.

His example makes some linguistic simplifications that may conceal

the actual capabilities of his implementation. Assessment: fair.

Code: Java. Assessment: good.

Architecture: The code is well-documented and can easily be adopted to

various needs. Assessment: good.

Usability: Documentation is OK, code is clear and easy to modify. Assess-

ment: good.

12http://en.wikipedia.org/wiki/Brill_tagger
13http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/

RULE_BASED_TAGGER_V.1.14.tar.Z
14http://www.nltk.org/
15http://www8.informatik.uni-erlangen.de/en/demosdownloads.html
16http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.

html
17http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.

html

http://en.wikipedia.org/wiki/Brill_tagger
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_V.1.14.tar.Z
http://www.nltk.org/
http://www8.informatik.uni-erlangen.de/en/demosdownloads.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://en.wikipedia.org/wiki/Brill_tagger
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_V.1.14.tar.Z
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_V.1.14.tar.Z
http://www.nltk.org/
http://www8.informatik.uni-erlangen.de/en/demosdownloads.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html

6.2. Survey 132

9. alias-i’s LingPipe18 toolkit

Availability: Commercial. Assessment: poor.

Features: HMM tagger. No lemmatization. Assessment: fair.

Code: Java API. Assessment: fair.

Architecture: Because of the Java API, integration in various settings seems

feasible. Assessment: fair.

Usability: Seems well-documented. POS tutorial19 available on homepage.

Assessment: good.

10. Jitar20 is a simple trigram HMM POS tagger

Availability: Open source. However, the code provided on the project

homepage is incomplete.21 Assessment: poor (as code is incomplete).

Features: Simple trigram HMM tagger. No lemmatization. Assessment:

fair.

Code: Java. Assessment: good.

Architecture: In principle, easy integration. Assessment: fair.

Usability: Does not seem too complex which probably would make it fairly

easy to use. However, it is maintained by just one person who already

announced that Jitar development will be discontinued in favor of Ji-

tar’s C++ counterpart Citar.22 Assessment: poor.

6.2.2 Taggers for Danish

Only two established taggers seem to be available although some others may be

around as well. However, they may be narrowly tied to certain (closed) projects or

companies.

1. CST’s POS tagger

Availability: Brill’s allegedly modified code can be downloaded from the

site of the Centre for Language Technology (CST) as “open source”. CST

has trained the tagger on DSL’s publicly accessible PAROLE Corpus and

thus derived a language model for Danish which they have decided not

to give open public access to. Access is only given to an online version

of the tagger after prior agreement. Neither conditions nor contents of

the agreement are accessible on-site. Assessment: poor.

18http://alias-i.com/lingpipe/index.html
19http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
20http://github.com/danieldk/jitar
21Classes LanguageModel.java and LinearInterpolationLM.java have no con-

tents.
22http://langkit.org/

http://alias-i.com/lingpipe/index.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://github.com/danieldk/jitar
http://langkit.org/
http://cst.dk/online/pos_tagger/
http://alias-i.com/lingpipe/index.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://github.com/danieldk/jitar
http://langkit.org/

6.2. Survey 133

Features: Based on Brill’s rule-based framework. POS tagging only. How-

ever, CST provides a non-free lemmatizer with restricted access. As-

sessment: fair.

Code: C/C++. Assessment: fair.

Architecture: Restricted access to a web version only, not really suited for

huge amounts of text. Assessment: poor.

Usability: A moderate amount of additional info and a demo is found on

the tagger homepage. Assessment: fair.

2. VISL’s Constraint Grammar parser

Availability: The VISL CG-3 software has been developed by GrammarSoft

and is distributed as open source under the GNU General Public Li-

cense. However, the Danish grammar DanGram is not publicly avail-

able and tagging/parsing of Danish can only be performed via text-by-

text upload23 or through a paid-for remote interface (accessed via the

web). Conditions and prices have to be negotiated with GrammarSoft

in advance. Assessment: poor.

Features: Based on the Constraint Grammar framework (Karlsson et al.

(1995)), performs POS tagging, lemmatization and syntactic parsing.

It is claimed to have a particularly high precision. Assessment: good.

Code: C++. Assessment: fair.

Architecture: Restricted access to web-based versions only, not really

suited for larger amounts of text. Assessment: poor.

Usability: A comprehensive manual, a tutorial, examples, demos, and ad-

ditional info is found on the homepage. Assessment: good.

6.2.3 Conclusions

As availability is considered a major requirement, the following taggers are of par-

ticular interest to the WP 2.1 project: Stanford, Apache UIMA, unsupos, Brill, and

Sujit Pal’s tagger implementations. Common to all these taggers is that they derive

their language model from a training corpus and that they principally work as POS

taggers only. The disadvantage of this is that lemmatization comes in as a separate

process that requires specific tools or extensions to the existing implementations.

In addition, unknown words, i.e. words not seen in prior training material, seem

to be a problem for all taggers based on learning algorithms that produce language

models.

However, some of the mentioned taggers may be modified to also take into

account lexical knowledge and perform lemmatization as well, in particular Brill

23Uploaded texts will be added to VISL’s own corpora if their copyright status permits it.

http://beta.visl.sdu.dk/constraint_grammar.html
http://grammarsoft.com/
http://beta.visl.sdu.dk/remoting.html

6.3. Case study 134

and Sujit Pal. Stanford and UIMA may be extendable as well, but their code is

rather complex which probably makes the development of extensions difficult. As

for unsupos, the unsupervised learning approach probably is not suitable for the

needs of WP 2.1. Thus, it emerges that Sujit Pal’s HMM and Brill implementations

may be the most attractive solutions to start with. Stanford may be an alternative

whereas UIMA seems far too complex for the needs of POS tagging only. It is a

pity that both taggers specifically designed for handling Danish have severe usage

restrictions, otherwise they might have been worth giving a try as well.

The conclusion is to conduct a case study with Sujit Pal’s HMM implementa-

tion where it will be trained on the Danish Parole Corpus to evaluate the potential

of his HMM approach. If it fails, Stanford can be considered as a fallback option.

6.3 Case study

The starting point of the case study is the Java code of Sujit Pal’s HMM implemen-

tation24 including the Java HMM library Jahmm by Jean-Marc François25, Univer-

sity of Liège. Sujit Pal’s demo is based on building an HMM from the Brown Cor-

pus; in this study the tagged training corpus is the Danish PAROLE Corpus26.

6.3.1 Building a token-based HMM

The common approach of modeling an HMM is to view the word forms of a text

as visible observations and the set of possible POS tags as hidden states. In the fol-

lowing experiment, this approach, which is also demonstrated on Sujit Pal’s blog,

is applied to a setting for Danish.

The first step was to convert PAROLE from its TEI-like XML-structure to the

necessary Brown input format, as illustrated here:

To/AC kendte/AN russiske/AN historikere/NC Andronik/NP
Mirganjan/NP og/CC Igor/NP Klamkin/NP tror/VA ikke/RG ,/XP
at/CS Rusland/NP kan/VA udvikles/VA uden/SP en/PI

"/XP jernnæve/NC "/XP ./XP

De/PP hævder/VA ,/XP at/CS Ruslands/NP vej/NC til/SP

demokrati/NC går/VA gennem/SP diktatur/NC ./XP

[...]27

24http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.
html

25http://www.montefiore.ulg.ac.be/~francois/
26http://korpus.dsl.dk/e-resurser/parole-korpus.php?lang=uk

http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://code.google.com/p/jahmm/
http://www.montefiore.ulg.ac.be/~francois/
http://korpus.dsl.dk/e-resurser/parole-korpus.php?lang=uk
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://www.montefiore.ulg.ac.be/~francois/
http://korpus.dsl.dk/e-resurser/parole-korpus.php?lang=uk

6.3. Case study 135

As can be seen, the original PAROLE tags have been cut off after two characters,

the first character giving the POS, the second one giving a POS sub-classification.

Inflectional information is not present in the tags used here – a simplification that

should be avoided in a real setting.28

Building an HMM from PAROLE is quite straightforward and it actually does

POS tagging afterwards, however some problems need to be addressed:

1. The PAROLE Corpus is quite small in size, approximately 250,000 tokens

2. The tag set has not been adjusted to the actual needs and is probably too

large (25 different tags) to allow building an HMM from a corpus of this size

3. Only sentences with known word forms, i.e. such contained in PAROLE, can

be tagged on the basis of this HMM

As corpus size cannot be augmented within the scope of the ongoing project, to

cope with these restrictions, the tag set should be optimized as should the ele-

ments of the observable layer of the HMM. At the moment these are word forms

but it might be worth trying to map them to more abstract representations by us-

ing a lexicon. The following experiment will address this approach.

6.3.2 Building a lexicon-based HMM

The idea behind this approach is to map word forms in the text to their possible

POS tags prior to training and analyzing by applying a lexicon. During the training

phase, possible tags for a given token constitute the observable layer and the ac-

tual tag the hidden state. Information not relevant to the disambiguation process

should not be given in the tags at this state. Similarly, during tagging, the word

forms of the text in question are mapped to this simple tag-set. The design of the

jaPOS tagger described in Chapter 7 focuses on this approach.

28A comprehensive account of the the tag set used in PAROLE can be found in Keson (1998b) and

an abridged version in Keson (1998a).

Chapter 7

Design of the ePOS tagger
Making words tell who they are

DK-CLARIN WP 2.1 deliverables concerned

D10 Lemmatizer It is considered indispensable that corpus texts need to indicate

the lemma form of each inflected word form in the corpus to let the user of

the corpus perform more flexible queries. Therefore, it is necessary to ei-

ther develop or configure a lemmatizer (that may be based on a full-form

lexicon or a morphological analyzer). In the context of WP 2.1, a lemma-

tizer designed as an integral part of a POS tagger is the preferable solution.

Outcome: Tool with documentation.

D11 POS tagger In order to tag tokens in corpus texts with part-of-speech infor-

mation, it is necessary to either develop or configure a POS tagger (either

based on a full-form lexicon or a morphological analyzer) and a suitable tag

set. Outcome: Tool with documentation.

136

7.1. Modifications of the PAROLE Corpus 137

Outline of this chapter

This chapter gives an account of the ePOS tagger that is in part based on Sujit

Pal’s HMM implementation outlined in Chapter 6.1 The Danish PAROLE corpus

is chosen as source for the language model that the tagger needs in order to work.

Even if the quality of the PAROLE corpus is fairly high, it comprises some incon-

sistencies and mistakes that need to be adjusted before it is viable as a source for a

language model. The modifications undertaken in order to enhance the PAROLE

corpus are described in Section 7.1. The concepts and functionality of ePOS as

well as the tag set and the construction of the language model are the main topics

of Section 7.2.

7.1 Modifications of the PAROLE Corpus 137

7.1.1 Sentences . 137

7.1.2 Tokens and token boundaries 138

7.1.3 Other PAROLE modifications 139

7.2 The ePOS tag set for Danish . 139

7.2.1 Tag structure . 140

7.2.2 POS markers and subclassifiers in ePOS 142

7.1 Modifications of the PAROLE Corpus

The most important considerations on text formats as outlined in Chapter 4 were

to keep things as simple as possible. This means that the process of segment-

ing a text into smaller units should not imply linguistic prior knowledge of any

kind. Instead, a mechanical, algorithmic approach is preferred. However, this in-

troduces some intricacies when using PAROLE as a basis for the language model

as PAROLE applies a linguistically informed approach to the concepts of sentences

and words, and it segments the texts accordingly prior to the POS annotation pro-

cess. PAROLE thus cannot be used as is as input to a language model that will

be applied on material segmented by another, more mechanical approach than

PAROLE. Therefore, some modifications of PAROLE were inevitable. These mod-

ifications – totaling to nearly 9000 cases – are described in detail in the following

sections. The resulting modified version of PAROLE (PAROLE Version 2) is freely

available upon request.

7.1.1 Sentences

PAROLE is subdivided into sentence-like textual units enclosed by <s> and </s>
tags. Feeding the language model builder with this kind of textual chunks means

1http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.
html

http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html

7.1. Modifications of the PAROLE Corpus 138

that the material to be POS-tagged later on also should resemble that form to a

certain extent. This requires a PAROLE type of sentence splitter to be applied prior

to (or during) tagging. Punctuation within sentences may to some extent help

building a reliable language model during the training phase but must then also

be part of the input to be tagged.

The simplest solution would be to work on material without sentence bound-

ary markers but take into account punctuation during training and tagging as

this implies a minimum of preprocessing, i.e. just pre-tokenization yielding ba-

sic tokens. However, as Sujit Pal’s HMM tagger requires the input material during

training and tagging to be divided into sentence-like chunks, we end up with a

solution where the material is split into individual sentences by some kind of sen-

tence splitting algorithm (baked into the tagger) and where we take into account

sentence-internal punctuation.

7.1.2 Tokens and token boundaries

ePOS is entirely based on the concept of basic tokens defined in Chapter 4 and

has no linguistic concept of what a word is. So, in ePOS, a word is just a string

delimited by characters defined as token boundaries. Token boundaries are either

space characters or punctuation characters.2 These basic tokens need to be tagged

in some sensible way even in cases where they do not correspond to linguistic

concepts of what a word is. The strictly mechanical token concept has certain

implications:

Multiword units: As space characters always are treated as token boundaries

there is no concept of multiword units. Each token of such a unit is tagged

individually.

Punctuation: Abbreviations, numbers, or hyphenated compounds containing

punctuation characters like stops, commas, apostrophes, or hyphens are

split into basic tokens at the position of the punctuation character. Each of

these basic tokens has to be tagged individually.

Tagging parts of what is normally considered words may in some cases seem

weird. However, tagging will most likely show a higher degree of consistency as

no linguistic knowledge must be provided nor maintained. The tag set applied to

handle these special cases is described in Section 7.2.

As the PAROLE corpus applies a more linguistically informed token concept,

it allows tokens to contain characters that are considered non-token characters in

our context.3 Therefore, the tokens of PAROLE and their tags are converted into

basic tokens (i.e. the type of tokens defined by DK-CLARIN) prior to using this

corpus for building a language model. In detail, all tokens containing space, stop,

hyphen, slash, backslash, comma, or apostrophe characters must be converted

2A list of punctuation characters is found in Table 5.1 in Chapter 5.
3Details are listed in the appendix of Keson (1998b).

7.2. The ePOS tag set for Danish 139

into their DK-CLARIN equivalents. Table 7.1 shows the number of words in PA-

ROLE that need to be split.

The process of splitting such words, which affects approximately 7600 tokens,

was carried out manually and semi-automatically.

7.1.3 Other PAROLE modifications

Apart from re-tagging split words, the following modifications of the PAROLE cor-

pus were carried out:

⊲ Text errors (spelling errors, typos, inflectional errors, etc.) that were tagged

XX in PAROLE were manually corrected and re-tagged. All 1053 XX tags in

PAROLE 1.x have thus been converted into meaningful tags in PAROLE 2.0

instead.

⊲ During the process of manually modifying XX tags some hundred other tag-

ging errors were identified and corrected.

7.2 The ePOS tag set for Danish

The tag set applied in the ePOS tagger provides POS and inflectional information,

i.e., ideally, for each possible inflectional form of a lemma a corresponding, unam-

biguous tag is assigned. Tags outside this strictly inflectional scope, e.g. on syntax,

semantics, or morphological composition of lemmas, are currently not provided.

As the tagger is trained on the Danish PAROLE Corpus, the tag set of the ePOS

tagger will be based on that one used by PAROLE (see Keson (1998a) and Keson

(1998b)), however with some modifications, some of them as a consequence of the

modified token concept, cf. Section 7.1.2, some of them for simplification reasons

in order to hopefully achieve a better language model. The ePOS tagger utilizes a

full-form lexicon that is compiled from the following three resources:

⊲ An existing full-form lexicon derived from an earlier version of The Danish

Dictionary: FLEXIKON.

⊲ The freely available FLEXION lexicon established by Ole Norling-Christensen

and others, called ONCLEX in the following to better distinguish it from

FLEXIKON. 4

⊲ A supplementary lexicon derived from the tagged PAROLE material.

The ePOS full-form lexicon is described more in-depth in Chapter 8.

4ONCLEX can be downloaded from:

http://korpus.dsl.dk/e-resurser/boejningsformer_download.php?lang=en

http://korpus.dsl.dk/e-resurser/boejningsformer_download.php?lang=en

7.2. The ePOS tag set for Danish 140

7.2.1 Tag structure

The PAROLE tag set is positional which means that within a tag a certain inflec-

tional marker is always found at a fixed position in a sequence of markers making

up the tag. For example, in the case of nouns, the gender marker is always found

at position 3, number at position 4, case at position 5, and definiteness at posi-

tion 8. However, the positional system is dependent on the POS in question: In

the case of verbs, which also may carry nominal inflectional markers, definiteness

is still at position 8, but gender is at 4, number at 6, and case at 11 (see Keson

(1998a) and Keson (1998b)). These varying positions would make it very cumber-

some later on to perform corpus queries of the type find all words that are marked

for case = “genitive” no matter what their POS is. The ePOS tag set therefore favors

fixed, POS-independent marker positions.

In contrast to ePOS and PAROLE, the tag set applied by FLEXIKON and ON-

CLEX is a compact tag set that leaves out non-applicable and implicit information.

Hence, it is easy to decode for humans, but may be difficult to formulate complex

morphological corpus queries on. Therefore, the tag sets of these sources needs to

be converted into a positional one with fixed marker positions independent of the

POS in question.5

The basic structure of an ePOS tag is:

CLASS:nominal:verbal:additional

where CLASS is a two-character POS classifier comprising a POS indicator (first

character) and a sub-classifier. The first colon indicates the boundary between

the CLASS part and the inflectional part of the tag. Here, nominal and verbal

are strings of markers concerning nominal and verbal morphological information

respectively. The additional string carries further markers relevant to adjectives,

some adverbs, and pronouns. Marker strings have fixed lengths – nominal 4, ver-

bal 2, and additional 4. Each marker in such a string is represented by one char-

acter. The three groups of morphological markers are separated by colons (:). A

morphological marker which is irrelevant to a certain paradigm is marked with a

dash (-) at the respective position(s) of the tag. In cases where inflectional mark-

ers are underspecified, this is indicated by a hash sign (#) at the respective posi-

tion(s), meaning any value of this category. In certain cases PAROLE applies tags

that are underspecified beyond the level of underspecification that the ePOS tag

set envisages, that is, they could all be disambiguated by looking at the context in

which they occur. Instead of manually disambiguating these tags in the PAROLE

corpus prior to using it as a source for the language model of the tagger, they have

5The CST tag set used in the CST tagger (see Section 6.2.2), which is also based on PAROLE (and

seems in part to silently utilize ONCLEX as well), applies compact tags too, cf. the description of the

CST tag set at

⊲ http://cst.dk/online/pos_tagger/rapport/bilag/tagset.html.

The same applies to the VISL tag set.

http://cst.dk/online/pos_tagger/rapport/bilag/tagset.html

7.2. The ePOS tag set for Danish 141

been adopted by ePOS. In these cases, underspecified markers are marked with a

section sign (§). In order to further adapt PAROLE to ePOS, the ePOS-tagged ver-

sion of PAROLE should be examined and §-underspecifications should be man-

ually disambiguated.6 The applied markers in ePOS reflect the choices made in

PAROLE, cf. its documentation (Keson (1998a) or Keson (1998b)).

Nominal markers

The string of nominal markers is of length four, it carries the following markers:

1. Number (NUM): singular (s) or plural (p)

2. Definiteness (DEF): indefinite (i) or definite (d)

3. Case (CAS): unmarked (u), genitive (g), or fossilized (f), and – for personal

pronouns only – nominative (n) (accusative is identical with unmarked in

these cases and tagged with u)

4. Gender (GEN): common (c) or neuter (n)

Like PAROLE, ePOS considers gender an inflectional category – not only of adjec-

tives and verbal participles but for nouns as well, whereas ONCLEX leaves out any

explicit information on the gender of a noun and considers this phenomenon as

inherent to them.

Verbal markers

The string of verbal markers comprises two marker positions:

1. Tense (TMP): present (s), past (t)

2. Voice (VOC): active (a), passive (p)

Additional markers

Finally, additional markers constitute a heterogeneous group of the following four

markers:

1. Degree (DEG, adjectives and some adverbs): positive (p), comparative (c),

superlative (s), absolute superlative (a)

2. Person (PER, personal and possessive pronouns): first (1), second (2),

third (3)

3. Reflexiveness (RFL, personal and possessive pronouns): yes (y) or no (n)

4. Possessor (POS, possessive pronouns): singular (s) or plural (p)

7.2. The ePOS tag set for Danish 142

The following structure shows the positions of the tags used in ePOS:

All three marker strings are always present in a tag even if some of them are

unused (-) or underspecified (#or §). This ensures that it is always straightforward

to query on certain marker positions regardless of the POS in question.

The CLASS part of the tag comprises two characters. The first character in-

dicates part of speech, the second one may indicate a subclass. If there is no

subclass, the second character is a dash sign (-). Otherwise, for inflecting words,

the subclass always is triggered by a variation of the inflectional paradigm of that

particular POS, e.g. participle forms of verbs are characterized by the paradigm

VP:****:*-:---- with inflectional markers (from the table and descriptions

above) occurring at the positions marked * whereas finite forms have their in-

flectional markers according to the paradigm VF:----:**:----. Hence verbs

come in finite (tagged VF) or in participle (VP) flavor – as well as in a number of

other inflectional paradigms, cf. Table 7.3 in the next section.

7.2.2 POS markers and subclassifiers in ePOS

7.2.2.1 Class tags

Table 7.3 shows the class tags used in ePOS, i.e. the symbols used at the first po-

sition of the ePOS tags indicating the part-of-speech (Column POS) as well as the

symbols at the second positions of the ePOS tags giving a potential subclass (Col-

umn Sub.). The Paradigm column shows the structure of the full tag where marker

positions with an * carry inflectional information (denoted by one either charac-

ter from Table 7.2 or # or § as discussed in Section 7.2.1), whereas positions with a

dash are unused within the given class. The only exception from this is the VT tag

marking the past participle form of verbs that has a constant string of inflectional

markers (siu#:t-:----).

As the token concept (cf. Section 7.1.2) underlying ePOS considers hyphens

and apostrophes as token delimiters, we have to deal with special cases of tokens

that are not words themselves but parts of words. These may be tagged as lexi-

cal elements, inflectional morphemes, or word formation elements. Further details

about these types of tokens can be found in Chapter 8.

7.2.2.2 Lexical elements and inflectional endings

Lexical elements are parts of words that cannot be tagged as regular parts-of-

speech. They are often prefixes attached to a word by a hyphen. As such they

always play a role in lexical word formation. Lexical elements do not possess any

morphological markers, thus the corresponding part of the tag is always set to

----:--:----. Examples of such elements are

⊲
anti- social adfærd

EW:----:--:---- AC:siuc:--:p--- NC:siuc:--:----

6A future project worthwhile to consider.

7.2. The ePOS tag set for Danish 143

⊲
øko- tapas

EW:----:--:---- NC:piu#:--:----

Inflectional endings are grammatical morphemes attached to a noun, verb, or ad-

jective by an apostrophe. Some examples of this are

⊲
cv ’er

NC:siun:--:---- MN:piu#:--:----

⊲
vinderen ta ’r det hele

NC:sduc:--:---- VI:----:-a:---- MV:----:sa:---- PM:s-un:--:---- AC:sdu#:--:p---

⊲
det go ’e vejr

PM:s-un:--:---- AC:siuc:--:p--- MA:§§u§:--:p--- NC:siun:--:----

Inflectional endings are lexicalized in the full-form lexicon as a special case of lem-

mas. They can easily be identified as they all start with an @ character.

7.2.2.3 Word formation elements

Another effect of the token concept is that virtually any POS marker can also oc-

cur with the word formation subclassifier W (In Table 7.3 this is only listed for the

the lexical element E that occurs with the W subclassifier only). Word formation

elements do not possess any morphological markers, thus the corresponding part

of the tag is always set to ----:--:----, e.g. a noun token taking part in word

formation is tagged with NW:----:--:----. Some examples are listed below.

⊲
sidde- eller sovepladser

VW:----:--:---- CC:----:--:---- NC:piu#:--:----

⊲
super- formand

AW:----:--:---- NC:siuc:--:----

⊲
planlægnings-, forvaltnings-, og serviceopgaver

NW:----:--:---- NW:----:--:---- CC:----:--:---- NC:piu#:--:----

⊲
den 15- årige rocktøs

PM:s-uc:--:---- LW:----:--:---- AC:sdu#:--:p--- NC:siuc:--:----

⊲
fanden- i- voldsk

NM:----:--:---- TW:----:--:---- AC:siu§:--:p---

7.2.2.4 PAROLE’s residual group in ePOS

Tokens that cannot be identified as a regular part-of-speech are assigned to the

residual group in PAROLE. This group comprises abbreviations (tagged XA), for-

eign words (XF), formulae (XR), symbols (XS), punctuation (XP), and other (XX).

In ePOS, these subclasses have been reduced to XS (symbols) and XF (foreign)

7.2. The ePOS tag set for Danish 144

only, i.e. abbreviations, formulae, symbols, and other have been collapsed into

XS whereas XF is maintained, and XP is omitted. The XY tag comprises cases

where no adequate tag could be assigned, either because the token could not be

identified (not in the lexicon) or because the language model could not handle the

token in question (even if it is in the lexicon). All tags of the residual group have

their morphological part set to ----:--:----.

7.2. The ePOS tag set for Danish 145

Character Count

Period 2488

Space 1556

Hyphen 2831

Comma 150

Apostrophe 412

Slash 141

Colon 8

Brackets 2

Total 7588

Table 7.1: Number of PAROLE words that are split into basic tokens

CLASS nominal verbal additional

NUM DEF CAS GEN TMP VOC DEG PER RFL POS

s i u c s a p 1 y s
p d g n t p c 2 n p

f s 3
n a

Table 7.2: Inflectional markers

7.2. The ePOS tag set for Danish 146

POS Sub. Paradigm

V Verb I infinitive VI:----:-*:----

F finite VF:----:**:----

M imperative VM:----:--:----

G gerund VG:****:--:---

P participle VP:****:*-:----

T past part. VT:siu#:*-:----

D adv. part. VD:----:*-:----

A Adjective C common AC:****:--:*---

D adverbial AD:----:--:*---

L Numeral C cardinal LC:--*-:--:----

O ordinal LO:--**:--:----

N Noun C common NC:****:--:----

P proper NP:****:--:----

P Pronoun C reciprocal PC:*-*-:--:----

M demonstrative PM:*-**:--:----

I indefinite PI:*-**:--:----

O possessive PO:*--*:--:-***

P personal PP:*-**:--:-**-

R relative PR:*-**:--:----

D Adverb - D-:----:--:*---

I Interjection - I-:----:--:----

T Preposition - T-:----:--:----

C Conjunction C coordinating CC:----:--:----

S subordinating CS:----:--:----

U Unique I inf. marker UI:----:--:----

S som/der US:----:--:----

E Lexical element W word formation EW:----:--:----

M Inflectional ending N attached to a noun MN:****:--:----

V attached to a verb MV:----:**:----

A attached to an adj. MA:****:--:*---

X Residual S symbol XS:----:--:----

F foreign XF:----:--:----

Y tagging error XY:----:--:----

Table 7.3: POS markers and subclassifiers

Chapter 8

The full-form lexicon
Same word, different versions

Deliverables concerned

D9 Full-form lexicon Development and/or configuration of a full-form lexicon

for POS tagging. Outcome: Resource with documentation.

D10 Lemmatizer It is considered indispensable that corpus texts need to indicate

the lemma form of each inflected word form in the corpus to let the user of

the corpus perform more flexible queries. Therefore, it is necessary to ei-

ther develop or configure a lemmatizer (that may be based on a full-form

lexicon or a morphological analyzer). In the context of WP 2.1, a lemma-

tizer designed as an integral part of a POS tagger is the preferable solution.

Outcome: Tool with documentation.

D11 POS tagger In order to tag tokens in corpus texts with part-of-speech infor-

mation, it is necessary to either develop or configure a POS tagger (either

based on a full-form lexicon or a morphological analyzer) and a suitable tag

set. Outcome: Tool with documentation.

147

8.1. Enhancing existing material 148

Outline of this chapter

This chapter describes the anatomy of the full-form lexicon that is used for part-

of-speech (= POS) tagging. It gives an introduction to material that existed prior to

the development of the ePOS tagger (Section 8.1) and provides an account of how

this material was enhanced in order to suit the needs of ePOS tagging. Finally, in

Section 8.2, the ePOS full-form lexicon is described in detail.

8.1 Enhancing existing material . 148

8.1.1 ONC-Flexion . 148

8.2 Anatomy of the ePOS lexicon . 151

8.3 Inflectional paradigms . 151

8.3.1 Nouns . 151

8.3.2 Lexical and inflectional elements 151

8.1 Enhancing existing material

The input to the full-form lexicon we need for tagging (see Chapter 7) derives

from three lexical resources: ONC-Flexion, Flexikon, and – to a certain extent –

the PAROLE Corpus itself, cf. Figure 8.1. ONC-Flexion was derived from existing

machine-readable dictionaries in the early 1990s and used as a basis for inflec-

tional information in The Danish Dictionary, DDO. Flexikon was derived from an

early version of the DDO around 2000 and used for various purposes in conjunc-

tion with the Korpus 2000 website. The PAROLE Corpus, on which the initial lan-

guage model of the ePOS tagger is based, provides additional lexical entries, how-

ever, these entries are not verified and are therefore kept separately in an auxiliary

lexicon. At a later point in time new corpus material will be used to enhance the

ePOS lexicon that is meant to sever as a primary source for inflectional informa-

tion in the DDO. The following sections give a more detailed account of the lexical

sources of ePOS.

8.1.1 ONC-Flexion

8.1.1.1 Description

ONC-Flexion1 is a full-form list with information on parts of speech and inflection

for about 80,000 lemmas. ONC-Flexion was originally developed by Ole Norling

Christensen in the early 1990s in order to facilitate the process of writing The Dan-

ish Dictionary, DDO. ONC-Flexion has since been enhanced by the Korpus 2000

1Free download from:

http://korpus.dsl.dk/e-resurser/boejningsformer_download.php?lang=en

http://korpus.dsl.dk/e-resurser/boejningsformer_download.php?lang=en
http://korpus.dsl.dk/e-resurser/boejningsformer_download.php?lang=en

8.1. Enhancing existing material 149

project and a free version of it can be downloaded through the ordnet.dk web-

site. As ONC-Flexion is the most comprehensive and elaborate full-form lexicon

of Danish currently freely available, it is used as the major source of the ePOS full-

form lexicon.

The lemmas of ONC-Flexion originate from various older sources from the

1980s, and their inflectional forms have been derived from the source informa-

tion and automatically supplemented in a number of cases. The selection is very

wide, and a number of words are hardly relevant (e.g. proper nouns, nonce forma-

tions). The majority, however, are words also included in The Danish Dictionary,

DDO. In addition, DDO also includes other, particularly newer words that are not

in the list.

The structure of the full-form list may be illustrated by the following example:

*
certifikat
S
2 certifikat
4 certifikats
8 certifikatet
16 certifikatets
32 certifikater
64 certifikaters
128 certifikaterne
256 certifikaternes

A new lemma is always preceded by an asterisk (*) on a separate line. In the follow-

ing line the lemma appears in its lemma or base form, in line 3 its part of speech

is given. The following part of speech markers occur:

S: noun
A: adjective
V: verb
D: adverb
F: abbreviation
K: conjunction
L: onomatopoeic word
O: pronoun
P: proper noun
I: prefix
Æ: preposition
T: numeral
U: interjection
X: unidentified

http://ordnet.dk

8.1. Enhancing existing material 150

Class X comprises words that could not be immediately identified during auto-

matic analysis of the sources. In particular it contains words which usually occur

exclusively in fixed expressions with other words, e.g. badut (springe badut), bero

(stille i bero), besøgelsestid (kende sin besøgelsestid) or multi word units behaving

as a single word, e.g. au pair.

In addition to prefixes proper, e.g. di-, eks-, fore-, class I also comprises the

first elements of compounds, e.g. forenings-, forhandlings-, formue-.

Class P comprises proper nouns (i.e. in principle, nouns), but as it is almost

impossible to apply usable selection criteria discerning important from unimpor-

tant within the class, it is characterized by a degree of coincidence.

Class F reflects primarily an orthographic phenomenon. For all abbreviations,

a genitive form with apostrophe -s has been generated although many of these

seem questionable.

The line containing part of speech is followed by the different orthographic

forms which the word may take. The forms are always given in small letters even

if capital letters are used in the normally correct orthographic representation. Hy-

phens, full stops (in abbreviations) and spaces (e.g. a la), if any, are also omitted.

The omitted information can, however always be derived from the base form.

Each orthographic inflectional form in the list is preceded by a number (sep-

arated from the word by a tabulator) indicating which inflectional forms of the

lemma the form can be assigned to.

The numbers refer to the bits which have been placed in the following bit

pattern:

position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 value 1 2 4 8 16 32 64 128 256 512

1024 2048 4096 8192 16384 32768 If the bits in position 6, 10 and 11 have been en-

tered, the number becomes 64+1024+2048=3136. Different inflectional forms are

attached to each position depending on the part of speech. The following tables

show the forms attached to the individual positions in the bit pattern for relevant

part of speech.

has been built by algorithmically generating full forms based on lemma forms

and inflectional information of The Danish Dictionary (DDO). As the structure of

inflectional information in the DDO is suboptimal for NLP exploitation a minor

group of the automatically generated forms are erroneous, especially composite

nouns.

8.1.1.2 ePOS adaption

ONC-Flexion is based on orthographic forms: each orthographic form is only

listed once may have attached several inflectional functions. jaPOS is entirely

based on inflectional categories, so the same orthographic forms may be listed

under several categories.

8.2. Anatomy of the ePOS lexicon 151

ONC-Flexion is based on a slightly different token concept than jaPOS as full

stop, hyphen, and apostrophes are considered token characters and not bound-

aries as is the case in jaPOS. This means that words containing one or more of

these characters need special attention. The adaption algorithm identifies these

cases in ONC-Flexion and rejects them and puts them on a special list that is

checked manually.

8.2 Anatomy of the ePOS lexicon

8.3 Inflectional paradigms

8.3.1 Nouns

8.3.2 Lexical and inflectional elements

More on how these forms are tagged can be found in Chapter 7

8.3. Inflectional paradigms 152

Flexikon

DDO

PAROLE

ePOS tag set ePOS lexicon

New corpus material

ONC-Flexion

Misc. dictionary
data

Figure 8.1: Sources of the ePOS lexicon

Part V

Deployment

153

Chapter 9

Corpus specifications
The ingredients

Deliverables concerned

D18 Final version of corpus Final version of POS-tagged corpus of 45 million

words available for the DK-CLARIN repository and accessible through a

web-based (or other) concordance tool. Outcome: Resource with docu-

mentation.

Outline

This chapter describes the composition of the corpus, the text material included,

and how the corpus can be accessed.

9.1 Corpus composition . 154

9.2 Text material . 155

9.2.1 Wikipedia . 155

9.3 Corpus access . 155

9.1 Corpus composition

The following table shows from which sources the text material included in the

DK-CLARIN corpus were drawn.

154

9.2. Text material 155

Type Source Period Capture Text Items Tokens Remarks

bg Bentes blog 2008–2011 dsn.dk

bg Blogbogstaver 2005–2011 dsn.dk

bg Blogsbjerg 2007–2011 dsn.dk

9.2 Text material

9.2.1 Wikipedia

⊲ Headlines are left out in wikipedia articles which constitutes a severe prob-

lem as certain parts of these articles not relevant in a corpus context not can

be filtered out, especially the references and links.

⊲ List and tables articles have not been removed. Table articles contain lots of

| chars that were erroneously classified as words but have been reclassified

into punctuation characters by applying textjuggler.TextCleaner.

⊲ Space characters in <title> elements are erroneously replaced by under-

scores. Some titles end with a hex number.

9.3 Corpus access

http://www.bentehoffmann.dk/blog/
http://www.blogbogstaver.dk/
http://www.blogsbjerg.com/

Chapter 10

Corpus access
Some usage scenarios

Deliverables concerned

D14 Prototype of concordance tool A web-based concordance tool needs to be

configured/implemented as a prototype for testing. Outcome: Report.

D17 Final version of concordance tool Web-based concordancer with public ac-

cess. Outcome: Service with documentation.

156

10.1. Ways of accessing the corpus 157

Outline of this chapter

This chapter describes the ways of accessing the DK-CLARIN WP 2.1 Reference

corpus of general language anatomy and gives examples of some basic usage cases.

10.1 Ways of accessing the corpus . 157

10.2 Some usage scenarios . 157

10.1 Ways of accessing the corpus

10.2 Some usage scenarios

References

158

Bibliography

Andersen, M. S., Asmussen, H., and Asmussen, J. (2002). The project of Korpus

2000 Going Public. In Braasch, A. and Povlsen, C., editors, Proceedings of the

10th EURALEX International Congress, volume 1, pages 291–299, Copenhagen.

Euralex.

Asmussen, J. (2005). Automatic detection of new domain-specific words, using

document classification and frequency profiling. In Proceedings of the Corpus

Linguistics 2005 conference, volume 1, Birmingham.

Asmussen, J. (2008). DOT’s Sprogteknologiske Drejebog. Udviklingsopgaver i

forbindelse med ordnet-projektet. Technical report, Det Danske Sprog- og Litte-

raturselskab, ja-korpus.dsl.lan/doc/drejebogen.pdf.

Burnard, L. (2007). Reference Guide for the British National Corpus (XML Edition).

Technical report, Research Technologies Service at Oxford University Comput-

ing Services, www.natcorp.ox.ac.uk/XMLedition/URG/index.html.

Evert, S. and Giesbrecht, E. (2009). Part-of-speech tagging – a solved task? An

evaluation of POS taggers for the Web as corpus. In Alegria, I., Leturia, I., and

Sharoff, S., editors, Proceedings of the 5th Web as Corpus Workshop (WAC5), San

Sebastian, Spain.

Karlsson, F. et al. (1995). Constraint Grammar – A Language-Independent System

for Parsing Unrestricted Text. Mouton de Gruyter.

Keson, B. K. (1998a). Documentation of The Danish Morphosyn-

tactically Tagged PAROLE Corpus. Technical report, DSL, kor-

pus.dsl.dk/e-resurser/paroledoc_en.pdf.

Keson, B. K. (1998b). Vejledning til det danske morfosyntaktisk taggede PAROLE-

korpus. Technical report, DSL, korpus.dsl.dk/e-resurser/paroledoc_dk.pdf.

Konchady, M. (2006). Text Mining Application Programming. Programming Series.

Charles River Media, 1 edition.

Norling-Christensen, O. and Asmussen, J. (1998). The Corpus of The Danish Dic-

tionary. Lexikos. Afrilex Series, 8:223–242.

159

http://ja-korpus.dsl.lan/doc/drejebogen.pdf
http://www.natcorp.ox.ac.uk/XMLedition/URG/index.html
http://korpus.dsl.dk/e-resurser/paroledoc_en.pdf
http://korpus.dsl.dk/e-resurser/paroledoc_dk.pdf

	I Introduction
	1 Aim and concepts
	1.1 Aim of the project
	1.1.1 Reference corpus
	1.1.2 CMRS framework

	1.2 Project tasks and documentation outline
	1.3 Text collection, text bank, corpus
	1.3.1 Text collection/archive/repository
	1.3.2 Text bank
	1.3.3 Corpus

	II Design
	2 The text bank
	2.1 Introduction
	2.2 Implementation
	2.2.1 XML vs. relational db systems
	2.2.2 eXist – the text bank system by choice
	2.2.2.1 Advantages
	2.2.2.2 Disadvantages
	2.2.2.3 Current implementation and set-up
	2.2.2.4 User Interfaces

	2.3 Features
	2.3.1 Text repository
	2.3.2 Text registry
	2.3.3 Text supplier registry

	2.4 Alternative approaches

	3 Text metadata
	3.1 Concepts
	3.2 Header structure
	3.2.1 The file description
	3.2.1.1 The title statement
	3.2.1.2 The extent statement
	3.2.1.3 The publication statement
	3.2.1.4 The notes statement
	3.2.1.5 The source description

	3.2.2 The encoding description
	3.2.2.1 The sampling declaration
	3.2.2.2 The project description
	3.2.2.3 Application information

	3.2.3 The profile description
	3.2.3.1 Text creation
	3.2.3.2 Language usage
	3.2.3.3 Text description
	3.2.3.4 Text classification
	3.2.3.5 The participant description

	3.2.4 The revision description

	3.3 Filling in the header
	3.3.1 Full header template
	3.3.2 Value sets for header standard information
	3.3.2.1 Alphabetical list of value sets

	3.3.3 Additional value sets for text classification

	4 Text formatting
	4.1 Basic considerations
	4.1.1 Motivation
	4.1.2 Format requirements
	4.1.3 Consequences

	4.2 Formatting text
	4.2.1 A source sample to be formatted
	4.2.2 Bad: Formatting against the requirements
	4.2.3 Good: Formatting according to the requirements
	4.2.3.1 From source version to base format
	4.2.3.2 Annotations
	4.2.3.3 Putting base format and annotation layers together
	4.2.3.4 Additional information in the base version
	4.2.3.5 What happens to the source version of a text?
	4.2.3.6 Format requirements revisited

	4.2.4 Example
	4.2.4.1 Tokenization and layers of annotations

	III Collecting
	5 Processing text
	5.1 Implementation
	5.1.1 Web-services
	5.1.1.1 Demo Application

	5.1.2 Web-services and Java

	5.2 Header constructor: make-header
	5.2.1 Description
	5.2.2 Implementation
	5.2.3 Use

	5.3 Pre-tokenizer: pretokenize
	5.3.1 Description
	5.3.1.1 List of punctuation characters

	5.3.2 Implementation
	5.3.3 Use

	5.4 Text id registry: register-text
	5.4.1 Description
	5.4.2 Implementation
	5.4.3 Use

	5.5 id dispatcher: make-id
	5.5.1 Description
	5.5.2 Implementation
	5.5.3 Use

	5.6 Word and paragraph counter: count-units

	IV Markup
	6 Survey of POS taggers
	6.1 Requirements
	6.2 Survey
	6.2.1 Universal taggers
	6.2.2 Taggers for Danish
	6.2.3 Conclusions

	6.3 Case study
	6.3.1 Building a token-based HMM
	6.3.2 Building a lexicon-based HMM

	7 Design of the ePOS tagger
	7.1 Modifications of the PAROLE Corpus
	7.1.1 Sentences
	7.1.2 Tokens and token boundaries
	7.1.3 Other PAROLE modifications

	7.2 The ePOS tag set for Danish
	7.2.1 Tag structure
	7.2.2 POS markers and subclassifiers in ePOS
	7.2.2.1 Class tags
	7.2.2.2 Lexical elements and inflectional endings
	7.2.2.3 Word formation elements
	7.2.2.4 PAROLE's residual group in ePOS

	8 The full-form lexicon
	8.1 Enhancing existing material
	8.1.1 ONC-Flexion
	8.1.1.1 Description
	8.1.1.2 ePOS adaption

	8.2 Anatomy of the ePOS lexicon
	8.3 Inflectional paradigms
	8.3.1 Nouns
	8.3.2 Lexical and inflectional elements

	V Deployment
	9 Corpus specifications
	9.1 Corpus composition
	9.2 Text material
	9.2.1 Wikipedia

	9.3 Corpus access

	10 Corpus access
	10.1 Ways of accessing the corpus
	10.2 Some usage scenarios
	References
	Bibliography

