
Survey of POS taggers
Approaches to making words tell who they are

DK-CLARIN WP 2.1 Technical Report

Jørg Asmussen, DSL

Final version of May 5, 20151

Deliverables concerned

D10 Lemmatizer It is considered indispensable that corpus texts need to indicate

the lemma form of each inflected word form in the corpus to let the user of

the corpus perform more flexible queries. Therefore, it is necessary to ei-

ther develop or configure a lemmatizer (that may be based on a full-form

lexicon or a morphological analyzer). In the context of WP 2.1, a lemmatizer

designed as an integral part of a POS tagger is the preferable solution. Out-

come: Tool with documentation.

D11 POS tagger In order to tag tokens in corpus texts with part-of-speech infor-

mation, it is necessary to either develop or configure a POS tagger (either

based on a full-form lexicon or a morphological analyzer) and a suitable tag

set. Outcome: Tool with documentation.

1A more recent version may be available at:

http://korpus.dsl.dk/clarin/corpus-doc/pos-survey.pdf

1

http://korpus.dsl.dk/clarin/corpus-doc/pos-survey.pdf
http://korpus.dsl.dk/clarin/corpus-doc/pos-survey.pdf

1. Requirements

Outline of this document

This technical report describes WP 2.1’s requirements to part-of-speech (= POS)

tagging and provides a survey of existing POS approaches and their suitability.

The survey is based on the requirements defined in Section 1. The report finishes

with some conclusions on which approach to choose for tagging WP 2.1 corpus

texts.

1 Requirements . 2

2 Survey . 3

2.1 Universal taggers . 3

2.2 Taggers for Danish . 8

2.3 Conclusions . 9

3 Case study . 10

3.1 Building a token-based HMM 10

3.2 Building a lexicon-based HMM 11

4 Document history . 12

5 References . 12

1 Requirements

Within a narrow DK-CLARIN context, the process of POS tagging could be re-

duced to just letting some kind of black box perform what is needed in order to get

the text material of this corpus work-package marked-up with appropriate mor-

phosyntactic info. Seen in this is light, the major requirement would be precision,

therefore the only relevant answer allowed to ask on this topic may seem: How

close to 100 % do we get? However, precision is not a quality in itself but the result

of other properties.

As a black box is not configurable, and as requirements definitely will change

over time and beyond the narrow scope of the DK-CLARIN project, “close to

100 %” may not be that close once some of the prerequisites of the tagging sce-

nario have been modified. Therefore, an open configurable solution seems to be a

more forward-looking approach. Open means that both the tagger software itself

and its linguistic ‘knowledge’ must be open source and thus configurable, and

available for free for everybody. Open source and free availability is considered

a major requirement and crucial in order to achieve a permanent level of high

precision.

A secondary requirement is that the tagger should not just apply a model of the

language in question, i.e. Danish, and assign appropriate POS tags to words, but

also perform lemmatization, i.e. assign the base forms of all (inflected) words. As

2

2. Survey

a consequence of that, the tagger should apply an open-source full form lexicon

(that is available already, but definitely needs to be enhanced).2

Another requirement is that the tagger should be written in a widely-used,

platform-independent programming language that also is used as major coding

language in at least one of the DK-CLARIN corpus work-packages and thus pro-

vides a comprehensive API. As WP 2.1 uses Java and probably has the largest bulk

of text to tag, Java is considered the programming language of choice for the tag-

ger.

The tagger must be adaptive to various needs. For small occasional tagging

purposes, a web-based solution seems optimal. In order to make a web-based tag-

ger fit into specific text processing lines, it should come as a web service as well.

Finally, the software should be executable on a stand-alone PC or workstation in

order to process vast amounts of text quickly and without the need to access re-

mote services.

Moreover, the tagger should be well-documented and continuously main-

tained (and enhanced) by a community rather than one single developer. It

should be user-friendly to set up and get running.

To sum up, the following requirements given in prioritized order are consid-

ered crucial:

Availability: Free open-source tagger code and linguistic resources

Features: Capable of performing both POS tagging and lemmatization

Code: Tagger coded in Java or at least providing a Java API

Architecture: Flexible architecture adaptive to various usage scenarios

Usability: Well-documented and continuously maintained, user-friendly

2 Survey

In this section, various taggers are presented in arbitrary order and described

according to the requirements given in the section above. The section is subdi-

vided in a listing of universal taggers, i.e. taggers that in principle are language-

independent, and taggers, specifically designed for or adopted to Danish.

2.1 Universal taggers

A comprehensive list of taggers can be found on Stanford University’s NLP site3.

Evert and Giesbrecht (2009) give an evaluation of the performance on German of

some of these taggers, i.e. TreeTagger, TnT, SVMTagger, Stanford tagger, and the

Apache UIMA Tagger.

2See http://korpus2000.dk/e-resurser/boejningsformer_download.php?lang=uk.
3http://nlp.stanford.edu/links/statnlp.html

3

http://nlp.stanford.edu/links/statnlp.html#Taggers
http://korpus2000.dk/e-resurser/boejningsformer_download.php?lang=uk
http://nlp.stanford.edu/links/statnlp.html

2. Survey

1. IMS’s TreeTagger – a language-independent POS tagger4

Availability: Free for academic use, easy download, comes with free lan-

guage models for approximately 10 languages, but not Danish. Not

open source. Assessment: poor.

Features: HMM5 tagger using decision trees for smoothing. Performs

lemmatization if a full form lexicon is supplied. Assessment: good.

Code: Comes as precompiled binaries, a Java API is available, but no java

source files. Assessment: fair.

Architecture: The Java wrapper makes it possible to adopt the tagger to var-

ious usage-scenarios. Assessment: good.

Usability: The tagger was developed as part of the project Textcorpora und

Erschließungswerkzeuge (1993-1996) at the IMS (same project as Cor-

pus Workbench, CWB/CQP) and has not changed substantially since

then. Documentation is sparse (included as a read me in the download

package) but probably enough to both use the software for training

and tagging purposes. The tagger is maintained by one single person

(Helmut Schmid). However, it seems to have a fairly large user commu-

nity that partly overlaps with those who use CQP as well. Assessment:

fair.

2. TnT6

Availability: Free of charge for non-commercial research purposes. Down-

load requires signed license agreement. Comes with language models

for German and English. Not open source. Assessment: poor.

Features: HMM tagger with standard smoothing. Does not perform

lemmatization. Assessment: fair.

Code: Comes as precompiled binaries, no wrappers available. Assessment:

poor.

Architecture: May work in an I/O pipeline setting. Assessment: poor.

Usability: The tagger was developed by Thorsten Brants at Saarland Uni-

versity 1993-1999 and does not seem to have changed substantially

since then. Documentation7 is OK. The tagger does not seem to be ac-

tively maintained any longer. Assessment: poor.

3. SVMTool8

4http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
5Hidden Markov Models.
6http://www.coli.uni-saarland.de/~thorsten/tnt/
7http://www.coli.uni-saarland.de/~thorsten/publications/Brants-TR-TnT.pdf
8http://www.lsi.upc.es/~nlp/SVMTool/

4

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.coli.uni-saarland.de/~thorsten/tnt/
http://www.coli.uni-saarland.de/~thorsten/publications/Brants-TR-TnT.pdf
http://www.lsi.upc.es/~nlp/SVMTool/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.coli.uni-saarland.de/~thorsten/tnt/
http://www.coli.uni-saarland.de/~thorsten/publications/Brants-TR-TnT.pdf
http://www.lsi.upc.es/~nlp/SVMTool/

2. Survey

Availability: Open source with models for Catalan, English, and Spanish.

However, it must be trained by using the non open-source SVMlight

software which can be used for free for academic purposes. Assess-

ment: fair.

Features: Based on Support Vector Machines. Configurable in many ways.

No lemmatization. Assessment: fair.

Code: C++ and Perl versions, Perl API. Assessment: fair.

Architecture: Can work in an I/O pipeline setting. Assessment: poor.

Usability: The SVMTool has been developed at the TALP Research Center

NLP group at Universitat Politècnica de Catalunya. Latest version

seems to be from 2006. Documentation9 is OK. Assessment: fair.

4. Stanford Log-linear Part-Of-Speech Tagger10

Availability: Open source. Models for English, Arabic, Chinese, and Ger-

man. Assessment: good.

Features: Based on the Maximum Entropy framework. It can be trained on

any language on a POS-annotated training text for the language. No

lemmatization. Assessment: fair.

Code: Java implementation. Assessment: good.

Architecture: Open source, thus easy integration in other environments.

Assessment: good.

Usability: Comes with good documentation and seems well-maintained

and up-to-date. Literature pointers on up-to-date website. Java NLP

user lists are available for further information. However, applying

the tagger to other languages than those with pre-compiled models,

seems rather challenging. Assessment: fair.

5. Apache UIMA Tagger11

Availability: Open source. Comes with models for English and German. As-

sessment: good.

Features: HMM tagger as part of the Apache Unstructured Information

Management Architecture (UIMA) framework. No lemmatization.

Assessment: fair.

Code: Java. Assessment: good.

Architecture: Flexible. Web service integration as component of the frame-

work. Assessment: good.

9http://www.lsi.upc.edu/~nlp/SVMTool/SVMTool.v1.3.pdf
10http://nlp.stanford.edu/software/tagger.shtml
11http://uima.apache.org/sandbox.html

5

http://svmlight.joachims.org/
http://www.lsi.upc.edu/~nlp/SVMTool/SVMTool.v1.3.pdf
http://nlp.stanford.edu/software/tagger.shtml
http://uima.apache.org/sandbox.html
http://www.lsi.upc.edu/~nlp/SVMTool/SVMTool.v1.3.pdf
http://nlp.stanford.edu/software/tagger.shtml
http://uima.apache.org/sandbox.html

2. Survey

Usability: Website and documentation seems OK even if latest website up-

dates are from 2009. However, the UIMA framework has reached a de-

gree of complexity (obscure code interdependencies) that makes the

use of the tagger component rather cumbersome. Assessment: poor.

6. Chris Biemann’s unsupos – unsupervised POS tagging12

Availability: Open source. Models for a number of languages available in-

cluding Danish. It is not clear what type of material the Danish model

is based on. Assessment: good.

Features: Unsupervised POS tagging. Does not require an annotated train-

ing corpus. Instead, word categories are determined by analyzing a

large sample of monolingual, sentence-separated plain text. The tag

set can probably not be determined by the user/linguist. No lemmati-

zation. Assessment: poor.

Code: Java implementation. Assessment: good.

Architecture: Probably easy to integrate in various environments. Assess-

ment: good.

Usability: Documentation is sparse, homepage and maintenance do not

seem to be quite up-to-date. Assessment: poor.

12http://wortschatz.uni-leipzig.de/~cbiemann/software/unsupos.html

6

http://wortschatz.uni-leipzig.de/~cbiemann/software/unsupos.html
http://wortschatz.uni-leipzig.de/~cbiemann/software/unsupos.html

2. Survey

7. Eric Brill’s simple rule-based part of speech tagger13

Availability: Source code accessible at Plymouth Tech.14 Assessment: good.

Features: Based on rules derived from a training corpus. No lemmatization.

However, absence of lemmatization may be resolved by modifying the

code and implementing a lexicon (if the tagger is open source). Assess-

ment: fair.

Code: Originally implemented in C. Also implemented in Python as part of

NLTK15. An interesting implementation of Brill’s ideas combined with

an HMM approach is the Erlangen-Tagger16 though documentation

of this approach seems poor and it is not open source. The same ap-

proach however is applied by Sujit Pal17 whose Java code is available

as open source (see also the next tagger reviewed here). Assessment:

good.

Architecture: Depending on the implementation, the tagger can be easily

adopted to various conditions. Assessment: good.

Usability: Especially the Python and the Java implementations come with

good documentation. Assessment: good.

8. Sujit Pal’s HMM-based tagger18

Availability: Source code available from Sujit Pal’s blog. Comes with a

model for English derived from the Brown Corpus. Assessment: good.

Features: HMM tagger based on Konchady (2006). No lemmatization. How-

ever, as the code is well-structured and not too complex, other features

may be added. Sujit Pal is a software developer, not a linguist. His ex-

ample makes some linguistic simplifications that may conceal the ac-

tual capabilities of his implementation. Assessment: fair.

Code: Java. Assessment: good.

Architecture: The code is well-documented and can easily be adopted to

various needs. Assessment: good.

Usability: Documentation is OK, code is clear and easy to modify. Assess-

ment: good.

13http://en.wikipedia.org/wiki/Brill_tagger
14http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/

RULE_BASED_TAGGER_V.1.14.tar.Z
15http://www.nltk.org/
16http://www8.informatik.uni-erlangen.de/en/demosdownloads.html
17http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.

html
18http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html

7

http://en.wikipedia.org/wiki/Brill_tagger
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_V.1.14.tar.Z
http://www.nltk.org/
http://www8.informatik.uni-erlangen.de/en/demosdownloads.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://en.wikipedia.org/wiki/Brill_tagger
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_V.1.14.tar.Z
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_V.1.14.tar.Z
http://www.nltk.org/
http://www8.informatik.uni-erlangen.de/en/demosdownloads.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-rule-based-pos-tagger.html
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html

2. Survey

9. alias-i’s LingPipe19 toolkit

Availability: Commercial. Assessment: poor.

Features: HMM tagger. No lemmatization. Assessment: fair.

Code: Java API. Assessment: fair.

Architecture: Because of the Java API, integration in various settings seems

feasible. Assessment: fair.

Usability: Seems well-documented. POS tutorial20 available on homepage.

Assessment: good.

10. Jitar21 is a simple trigram HMM POS tagger

Availability: Open source. However, the code provided on the project

homepage is incomplete.22 Assessment: poor (as code is incomplete).

Features: Simple trigram HMM tagger. No lemmatization. Assessment:

fair.

Code: Java. Assessment: good.

Architecture: In principle, easy integration. Assessment: fair.

Usability: Does not seem too complex which probably would make it fairly

easy to use. However, it is maintained by just one person who already

announced that Jitar development will be discontinued in favor of Ji-

tar’s C++ counterpart Citar.23 Assessment: poor.

2.2 Taggers for Danish

Only two established taggers seem to be available although some others may be

around as well. However, they may be narrowly tied to certain (closed) projects or

companies.

1. CST’s POS tagger

Availability: Brill’s allegedly modified code can be downloaded from the

site of the Centre for Language Technology (CST) as “open source”. CST

has trained the tagger on DSL’s publicly accessible PAROLE Corpus and

thus derived a language model for Danish which they have decided not

to give open public access to. Access is only given to an online version

of the tagger after prior agreement. Neither conditions nor contents of

the agreement are accessible on-site. Assessment: poor.

19http://alias-i.com/lingpipe/index.html
20http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
21http://github.com/danieldk/jitar
22Classes LanguageModel.java and LinearInterpolationLM.java have no contents.
23http://langkit.org/

8

http://alias-i.com/lingpipe/index.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://github.com/danieldk/jitar
http://langkit.org/
http://cst.dk/online/pos_tagger/
http://alias-i.com/lingpipe/index.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://github.com/danieldk/jitar
http://langkit.org/

2. Survey

Features: Based on Brill’s rule-based framework. POS tagging only. How-

ever, CST provides a non-free lemmatizer with restricted access. As-

sessment: fair.

Code: C/C++. Assessment: fair.

Architecture: Restricted access to a web version only, not really suited for

huge amounts of text. Assessment: poor.

Usability: A moderate amount of additional info and a demo is found on

the tagger homepage. Assessment: fair.

2. VISL’s Constraint Grammar parser

Availability: The VISL CG-3 software has been developed by GrammarSoft

and is distributed as open source under the GNU General Public Li-

cense. However, the Danish grammar DanGram is not publicly avail-

able and tagging/parsing of Danish can only be performed via text-by-

text upload24 or through a paid-for remote interface (accessed via the

web). Conditions and prices have to be negotiated with GrammarSoft

in advance. Assessment: poor.

Features: Based on the Constraint Grammar framework (Karlsson et al.

(1995)), performs POS tagging, lemmatization and syntactic parsing.

It is claimed to have a particularly high precision. Assessment: good.

Code: C++. Assessment: fair.

Architecture: Restricted access to web-based versions only, not really

suited for larger amounts of text. Assessment: poor.

Usability: A comprehensive manual, a tutorial, examples, demos, and ad-

ditional info is found on the homepage. Assessment: good.

2.3 Conclusions

As availability is considered a major requirement, the following taggers are of par-

ticular interest to the WP 2.1 project: Stanford, Apache UIMA, unsupos, Brill, and

Sujit Pal’s tagger implementations. Common to all these taggers is that they derive

their language model from a training corpus and that they principally work as POS

taggers only. The disadvantage of this is that lemmatization comes in as a separate

process that requires specific tools or extensions to the existing implementations.

In addition, unknown words, i.e. words not seen in prior training material, seem to

be a problem for all taggers based on learning algorithms that produce language

models.

However, some of the mentioned taggers may be modified to also take into ac-

count lexical knowledge and perform lemmatization as well, in particular Brill and

24Uploaded texts will be added to VISL’s own corpora if their copyright status permits it.

9

http://beta.visl.sdu.dk/constraint_grammar.html
http://grammarsoft.com/
http://beta.visl.sdu.dk/remoting.html

3. Case study

Sujit Pal. Stanford and UIMA may be extendable as well, but their code is rather

complex which probably makes the development of extensions difficult. As for un-

supos, the unsupervised learning approach probably is not suitable for the needs

of WP 2.1. Thus, it emerges that Sujit Pal’s HMM and Brill implementations may be

the most attractive solutions to start with. Stanford may be an alternative whereas

UIMA seems far too complex for the needs of POS tagging only. It is a pity that

both taggers specifically designed for handling Danish have severe usage restric-

tions, otherwise they might have been worth giving a try as well.

The conclusion is to conduct a case study with Sujit Pal’s HMM implementa-

tion where it will be trained on the Danish Parole Corpus to evaluate the potential

of his HMM approach. If it fails, Stanford can be considered as a fallback option.

3 Case study

The starting point of the case study is the Java code of Sujit Pal’s HMM implemen-

tation25 including the Java HMM library Jahmm by Jean-Marc François26, Univer-

sity of Liège. Sujit Pal’s demo is based on building an HMM from the Brown Cor-

pus; in this study the tagged training corpus is the Danish PAROLE Corpus27.

3.1 Building a token-based HMM

The common approach of modeling an HMM is to view the word forms of a text

as visible observations and the set of possible POS tags as hidden states. In the fol-

lowing experiment, this approach, which is also demonstrated on Sujit Pal’s blog,

is applied to a setting for Danish.

The first step was to convert PAROLE from its TEI-like XML-structure to the

necessary Brown input format, as illustrated here:

To/AC kendte/AN russiske/AN historikere/NC Andronik/NP

Mirganjan/NP og/CC Igor/NP Klamkin/NP tror/VA ikke/RG ,/XP

at/CS Rusland/NP kan/VA udvikles/VA uden/SP en/PI

"/XP jernnæve/NC "/XP ./XP

De/PP hævder/VA ,/XP at/CS Ruslands/NP vej/NC til/SP

demokrati/NC går/VA gennem/SP diktatur/NC ./XP

[...]28

As can be seen, the original PAROLE tags have been cut off after two characters,

the first character giving the POS, the second one giving a POS sub-classification.

25http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
26http://www.montefiore.ulg.ac.be/~francois/
27http://korpus.dsl.dk/e-resurser/parole-korpus.php?lang=uk

10

http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://code.google.com/p/jahmm/
http://www.montefiore.ulg.ac.be/~francois/
http://korpus.dsl.dk/e-resurser/parole-korpus.php?lang=uk
http://sujitpal.blogspot.com/2008/11/ir-math-in-java-hmm-based-pos.html
http://www.montefiore.ulg.ac.be/~francois/
http://korpus.dsl.dk/e-resurser/parole-korpus.php?lang=uk

3. Case study

Inflectional information is not present in the tags used here – a simplification that

should be avoided in a real setting.29

Building an HMM from PAROLE is quite straightforward and it actually does

POS tagging afterwards, however some problems need to be addressed:

1. The PAROLE Corpus is quite small in size, approximately 250,000 tokens

2. The tag set has not been adjusted to the actual needs and is probably too

large (25 different tags) to allow building an HMM from a corpus of this size

3. Only sentences with known word forms, i.e. such contained in PAROLE, can

be tagged on the basis of this HMM

As corpus size cannot be augmented within the scope of the ongoing project, to

cope with these restrictions, the tag set should be optimized as should the ele-

ments of the observable layer of the HMM. At the moment these are word forms

but it might be worth trying to map them to more abstract representations by us-

ing a lexicon. The following experiment will address this approach.

3.2 Building a lexicon-based HMM

The idea behind this approach is to map word forms in the text to their possible

POS tags prior to training and analyzing by applying a lexicon. During the training

phase, possible tags for a given token constitute the observable layer and the ac-

tual tag the hidden state. Information not relevant to the disambiguation process

should not be given in the tags at this state. Similarly, during tagging, the word

forms of the text in question are mapped to this simple tag-set. The design of the

jaPOS tagger described in Asmussen (2014) focuses on this approach.

29A comprehensive account of the the tag set used in PAROLE can be found in Keson (1998b) and

an abridged version in Keson (1998a).

11

4. Document history

4 Document history

The most recent version of this report can be downloaded from:

◮ http://korpus.dsl.dk/clarin/corpus-doc/pos-survey.pdf

5 References

Asmussen, J. (2014). Design of the ePOS tagger. Technical report, DK-CLARIN,

korpus.dsl.dk/clarin/corpus-doc/pos-design.pdf.

Evert, S. and Giesbrecht, E. (2009). Part-of-speech tagging – a solved task? An

evaluation of POS taggers for the Web as corpus. In Alegria, I., Leturia, I., and

Sharoff, S., editors, Proceedings of the 5th Web as Corpus Workshop (WAC5), San

Sebastian, Spain.

Karlsson, F. et al. (1995). Constraint Grammar – A Language-Independent System

for Parsing Unrestricted Text. Mouton de Gruyter.

Keson, B. K. (1998a). Documentation of The Danish Morphosyn-

tactically Tagged PAROLE Corpus. Technical report, DSL, kor-

pus.dsl.dk/e-resurser/paroledoc_en.pdf.

Keson, B. K. (1998b). Vejledning til det danske morfosyntaktisk taggede PAROLE-

korpus. Technical report, DSL, korpus.dsl.dk/e-resurser/paroledoc_dk.pdf.

Konchady, M. (2006). Text Mining Application Programming. Programming Series.

Charles River Media, 1 edition.

12

http://korpus.dsl.dk/clarin/corpus-doc/pos-survey.pdf
http://korpus.dsl.dk/clarin/corpus-doc/pos-design.pdf
http://korpus.dsl.dk/e-resurser/paroledoc_en.pdf
http://korpus.dsl.dk/e-resurser/paroledoc_dk.pdf

	 Survey of POS taggers
	1 Requirements
	2 Survey
	2.1 Universal taggers
	2.2 Taggers for Danish
	2.3 Conclusions

	3 Case study
	3.1 Building a token-based HMM
	3.2 Building a lexicon-based HMM

	4 Document history
	5 References

